
   
 
 

 
 
 
 
 
 
 
 
 
 
                   

Getting 
Started 

with 
PACE 

 
 
                        

Tutorial 

 
 
 
 
   

 
IBE Simulation Engineering GmbH 



  
  

Getting Started with PACE - 2 -          

 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
© Copyright IBE GmbH 1994-2008 
Author: B. Eichenauer 
  
 
IBE Simulation Engineering GmbH 
Postfach 1142 
D-85623 Glonn 
Germany 
Tel.:  +49-(0)8093-5000 
Fax:  +49-(0)8093-902687 
E-mail: info@ibepace.com 
Home: http://www.ibepace.com 
 
This tutorial was developed for PACE 2008. 
 
All rights reserved. No part of this documentation may be reproduced, translated, or 
transmitted in any form or by any means, electronic or mechanical, including photo-
copying, recording, or by any information storage and retrieval system, without per-
mission in writing from IBE GmbH. This includes the right of public presentation. 
 
Subject to alterations. The information included in this tutorial does not represent an 
obligation on the part of the publisher. The software described is delivered under a 
License Agreement and may be used and copied only in accordance with the condi-
tions included therein. 
 



                
 
 
 
 

 - 3 - Getting Started with PACE 

 

 
Table of Contents 

 
1. Foreword 

 1.1   General Introduction 
 1.2   Why do we need simulation models?  
 1.3   The PACE Methodology 

 
2. Basics 

 2.1   Net Description of Discrete Processes 
 2.2    Simple Nets 
 2.3   Attributes of Nets 

 
3.   Modeling a Car Wash 
3.1   The basic model 
3.2   Multiple washing programs 
3.3   Runtimes 
3.4   Iconizing 
 
4.   Components (Modules) 
4.1   Creating a component 
4.2   Using components 
 
5. More Useful Features 

 5.1  Defining and changing the standard representations of net components  
 5.2  Colored Nets 
 5.3  Initialization code, break code, continue code and termination code 
 5.4  Special Bars for the Simulation; Freezing Models 
 5.5  Scenes 
 5.6  Model Dictionary 

 
6. Optimization 

 6.1  Optimization procedures in PACE 
 6.2  Optimizing mathematical functions 
 6.3  Repeated execution of the whole model  
 6.4  Using PACE net functions 
 6.5  Mathematical optimization of models 
  

 7.  Example: Optimizing a production 
 7.1  Conceptual Formulation 
 7.2  Creating a model 
 7.3  Experimenting with the model 
 
 8.  What’s left to do? 

 



  
  

Getting Started with PACE - 4 -          

1.  Foreword 
 

Practice makes perfect. 
                       Proverb 
 
1.1   General Introduction 
 
If one purchases a new program with a complex functionality, then it usually takes 
several weeks until one is familiar with it and one can use it efficiently. Tutorials and 
manuals, and their appropriate use, become handy tools only when one has seen their 
operation in a number of examples and the use of their constructs has been tried in 
person. 
 
The following introduction hopes to speed and ease the usual learning curve with 
practical examples. In these examples, PACE’s many characteristics are described 
and used, so users have a basic knowledge of PACE after working through the tutorial 
and can create models on their own. The PACE manuals, which may be drawn on at 
any time, offer even more depth of information to allow quickly for problem-free model-
ing. 
 
To ensure that the individual steps of the modeling process are understood, a short 
representation of net modeling is needed. Here we will attempt to show the proce-
dures as closely as possible to real world situations, and will dispense with more theo-
retical discussions which are rarely or never helpful in practical applications. 
 
To introduce net modeling and modeling and simulation with PACE we’ll use a simple 
example, a car wash. We will take you step by step, mouse click by mouse click, 
through the modeling and simulation processes. Then we’ll demonstrate how to make 
configurable, reusable building blocks or components in PACE. Finally, we’ll discuss 
several additional useful characteristics of PACE. 
 
After introducing the general use of PACE, we’ll describe ways in which PACE assists 
in optimizing models. Here again, we’ll start with a simple example specifically chosen 
to assure that the procedures to be discussed are easily seen. 
 
PACE optimization procedures will then be discussed with a more extensive example. 
To keep the time and effort required for model creation to a minimum, we’ve some-
what simplified the task assignments. It’s up to you whether you wish to actually model 
these rather complex optimization models or simply review them. All examples are 
available on the PACE-CD in the "samples\new starter" directory and, after installing 
PACE, may be started by double-clicking on the respective models with the extension 
.imm. 
 
 
 
 
 



                
 
 
 
 

 - 5 - Getting Started with PACE 

 
1.2   Why Do We Need Simulation Models? 
 
Discussions on business process modeling usually deal less with the process im-
provements achievable through development tools, and more with the complexity of 
the models created. For example, at a production process seminar in Stuttgart in May 
2001, the panel discussion focused on the topic, „How complex may business model-
ing be?“ 
 
It is generally assumed that, especially in the planning of business models, one can 
limit oneself to a rough modeling of relationships, and that there is no need for a de-
tailed simulation of relationships. The following arguments are usually used: 
 

• A simple modeling method is adequate for the assignment, as it allows for easy 
and flexible changes in the model. 

 
• Simulation models requires many additional informations and are thus more 

complex than necessary. 
 

• Simulation tools are too IT-intensive and are therefore not suitable modeling 
tools for business processes. 

 
So today it is standard in modeling business processes to use only rough procedures 
in order to keep the models simple. That is not a problem, as long as models are 
merely used for the documentation of the processes. Unfortunately, it is common prac-
tice, very often with the use of spreadsheets, to use them for the planning of proc-
esses also. 
 
The many provisions of spreadsheets for special applications, e.g., data in/output, cost 
planning and cost analysis, are not at all called into question here. However, using 
such a static tool, it is not possible to transparently describe, model, and completely 
simulate the many organizational processes and relationships which appear, for ex-
ample, in production situations or in logical task assignments. Such comprehensive 
simulation is necessary to represent the different sequential procedures, to synchro-
nize them, and to find and distribute the necessary resources. 
 
Many examples, which may even be found in the daily news, show that advance plan-
ning is often not done with sufficient precision. Today many management decisions in 
industry and business administration are still made by gut feel due to a lack of objec-
tive decision criteria. The damage created by bad decisions can hardly be estimated, 
and only on rare occasions (e.g., in the public domain through audit agencies) is it reg-
istered and evaluated. 
 
The standard example for inadequate planning is the often-described Denver airport 
disaster, in which huge sums were wasted in cost overruns and follow-up costs.1  

                                                           
1 While reading this tutorial’s correction a further great civilian disaster of this kind ta-
kes place: the new terminal of London Heathrow.  According to the reports on the oc-
currences one must assume that no sufficient modeling and simulation was carried out 



  
  

Getting Started with PACE - 6 -          

Even more recently, six months after the major reorganization of a large German cor-
poration, the press asserted that the reorganization had not had the desired results 
and that the company was planning in part to undo it. Using modern simulation meth-
ods in the early stages of the reorganization, one could at least have avoided the 
enormous follow-up cost. One could have studied the target organization before im-
plementing changes, and would have known in advance if such organizational 
changes can lead to success or if perhaps better alternatives exist. 
 
For successful planning of business processes, one needs exact simulation models 
which provide a good foundation for difficult decisions and planning. These models 
then have to be as complex as they must be to solve this task satisfactorily. 
 
This does not mean that the models must be time- and cost-intensive, but rather that a 
good model requires an appropriate tool and appropriate expertise. Usually, the costs 
of modeling and simulation are quickly amortized through the smooth and resource-
optimal running of processes which would otherwise be achieved only by iteration, if at 
all. 
 
This iteration can become very expensive. So, when a large German company intro-
duced a new IT product, it required three years to ensure that production and service 
would work seamlessly. During that time, there were many problems with the distribu-
tion of resources, and many emergency measures were required to eliminate bottle-
necks, not to mention that the clients were not happy and began to consider other op-
tions. Many of these issues could have been avoided if the planned reorganization 
had been examined in advance by use of a simulation model. 
 
Finally here, a small example: To create the simple production optimization used in 
Chapter 7 of this Tutorial from scratch, a worker familiar with PACE requires approxi-
mately two eight-hour working days. At an hourly rate of 125€ for an IT professional, 
that puts the cost at 2,000€. If one looks at the simplest case, where just one worker 
too many is planned into a job, the weekly cost (50€ times a weekly work time of 40 
hours) is also 2,000€. Thus the creation of the simulation model would be amortized in 
just one week! 
 
 

                                                                                                                                                                                        
here either. How can one explain the reports on an unsatisfactory resource availability 
(e.g., for the transport and selection of luggage or for the check-in of airline passen-
gers) differently otherwise?  
 



                
 
 
 
 

 - 7 - Getting Started with PACE 

1.3   The PACE Methodology 
 
The PACE methodology is based on the premise that one can achieve realistic state-
ments of the relationships in realtime systems if one maps the systems in programs 
which behaves exactly as reality, i.e., that they show an identical behaviour as well 
with respect to the processes as with respect to the occurring process data. If that is 
done, one can use these programs to run cost-effective experiments to determine how 
outside influences and environmental scenarios affect reality, and what the optimal 
parameters are for certain criteria (development times and costs, production costs, 
resources, etc.). This tutorial will describe how realtime systems may be translated 
into simulation programs in an engineering-friendly way. 
 
Before we discuss how the suggested methodology is implemented, we will sketch out 
the difference from other methodologies so the differences may be better understood. 
Older methods usually express the relationships in the system to be modelled in ma-
thematical equations. These are computerized using programming in a simulation lan-
guage (e.g., GPSS, Simula) or via a calculation tool (e.g., spreadsheets). Other meth-
ods lean more in the direction suggested here, and model their processes without in-
cluding the characteristics required for reality-based execution of the processes (e.g., 
flow diagram tools, CASE tools, component systems). While flow diagram tools and 
most CASE tools can only represent the static aspects of process systems, with the 
dynamic aspects only perhaps added in the form of comments, component systems at 
least partially consider dynamic aspects. The model of a process system is built up 
with pre-made components or modules, which can be matched with a set of parame-
ters more or less good to real world conditions. Each module is assigned an algorithm 
which is executed when the module is called up. A true simulation as in PACE, in 
which objects run through the virtual system in a realistic and animatable fashion, 
does not occur. The problems in using module systems will be briefly discussed at the 
beginning of Chapter 4. 
 
Important in PACE methodology is to statically as well as dynamically provide a de-
tailed and exact picture of the parallel activities (processes) as well as the relation-
ships of the objects being worked upon. The required degree of detail is based on the 
precision of the desired results. 
 
Examination of the descriptive means of representing realtime systems led to three 
types of language elements and to the development of a semi-graphic modeling lan-
guage, MSL, which is a component of PACE. The structural agreement between real-
ity and model is achieved in PACE by translating the visual structure of an application 
one-to-one to the model, using a graphic editor. To ensure that the model is function-
ally identical, it must be executable, i.e., it must be set up as a simulation model. In the 
three types of language elements, this means: 
  
• Language elements to describe the structure of an application, including process 

ways in the application.  
 

• Language elements to represent the objects moving on the process ways. 
 

• Language elements to process the data of the objects and other process data. 



  
  

Getting Started with PACE - 8 -          

 
Language elements for representing process ways can be taken from Petri nets. In 
PACE, the processing steps are described with generalized Petri-net elements. The 
generalization is found in envisioning Petri-net elements with multiple attributes which 
set the exact processing of objects at net nodes (junctions). When applying attributes, 
for example, some net elements (so-called transitions) are provided with program 
code which pictures the processing of a real object. 
 
In addition to the process steps, the system structure of the real system must also be 
mirrored in the model. For that reason, PACE includes two additional net elements, 
modules and channels, for the hierarchical structuring of nets. 
 
After the structure and the process ways are represented, the dynamic objects which 
operate on these process ways must be introduced. In the model, they are repre-
sented by tokens or placeholders which run through the net on the process ways and 
which carry the characteristics of the real object needed in the model as attributes (ar-
guments or parameters). The object data is changed by running through the net using 
the program code mentioned above, ensuring that the processing, i.e., the changing of 
objects, represents a true and realistic picture. 
 
Finally, a script- or programming language must be chosen, to specify all net inscrip-
tions (program codes, names, comments, etc.). Since PACE itself is largely written in 
the object-oriented programming language Smalltalk, it seemed appropriate to avoid 
interface problems by using the same language, or a subset thereof, as the inscrip-
tion-language. This provides for working with model data in an easy-to-use language 
with an extensive method library. 
 
These procedures fulfil two further important requirements of model development and 
model change. They must provide simple test opportunities and must be flexible. Both 
requirements make creating and using models considerably easier and faster. 
Through step-by-step representation of the processes, one can use a debugging 
mode to quickly determine (if necessary, with the help of an expert who knows the 
modelled processes well) whether the model behaves realistically by analyzing the 
parallel process steps as they run and the data they generate.  
 
 
 
 
 
 
 
 
 
 
  

 

 



                
 
 
 
 

 - 9 - Getting Started with PACE 

2.   Basics 
2.1  Net Description of Discrete Processes 
 
Computer-supported simulation of business processes is in its infancy today, and only 
few programs are able to represent the complex processes to be analyzed in a com-
plete and reproducible way. The PACE program, with its mature semi-graphic Model-
ing and Simulation Language MSL which has been continually refined over more than 
15 years, has proven itself in modeling, simulating and optimizing processes in both 
industry and research/development. It is based on the net description of information 
streams invented in 1962 by Carl Adam Petri, and was expanded with many descrip-
tive elements for detail-exact modeling of business processes. This includes the ability 
to convert net nodes into processing objects by entering code, includes graphical and 
statistical libraries, fuzzy-logic, methods for visual and automatic net optimizing, mod-
ules for repetitive task assignments, and many opportunities for simple data input and 
results visualization. 
 
 
 

     
                                Figure 2.1: Overview of the Car Wash 
 
Petri nets are derived from the concept that most processes can be broken down into 
discrete individual steps which can be represented in the form of nets (directional 
graphs). 



  
  

Getting Started with PACE - 10 -          

To derive the elements of a classic Petri net, the following example will use a simple 
procedure, namely the washing process in a car wash, and decompose it into discrete 
individual steps. We are not interested here in the washing of the vehicles itself, but 
rather only in the behavior of the car wash under various customer loads. Thus, we 
will assume the car itself is an unchanging object which moves through the wash 
queue, changing the status of the wash line. 
 
 
 

                    
 
               Figure 2.2: Breaking down the washing procedure into individual steps 
 
Figure 2.1 shows an overview of the car wash. Cars arrive at the line from the right 



                
 
 
 
 

 - 11 - Getting Started with PACE 

and, depending on whether a vehicle is currently being washed or other vehicles are 
already waiting, may have to wait. After washing, the vehicle leaves the car wash at 
the back of the building. 
 
Figure 2.2 shows the wash procedure decomposed into five discrete individual steps. 
 
While the process steps ’driving to the car wash’, ’entering the car wash’, and ’exiting 
the car wash’ change the status of the car wash, the same is not true for the process 
steps ’waiting at the car wash’ and ’washing’. One can divide the washing process into 
three actions and two waiting positions. The simple Petri-net shown on the right side 
of Figure 2.2 is created if you assign a small square as the symbol for an action (tran-
sition), a small circle to symbolize a waiting position (place), and show the direction 
of movement through connecting arrows (connectors). Our net is not complete yet, 
however. For example, we have not yet expressed that the cars to be washed arrive in 
statistical distribution, that only one vehicle can be washed at any one time, and how 
long the wash procedure takes. These additional entries are set in PACE by adding 
attributes to net elements (see Section 2.3). 
 
A Petri-net is executed in a stepwise fashion, in which the object to be processed (rep-
resented by a small solid circle or token) is picked up from an entry holding zone (in-
put place), is processed in a transition, and then is sent to an exit holding zone (output 
place). For this reason, places and transitions must alternate. 
 

         
    Figure 2.3: Car wash with two waiting vehicles and one vehicle being washed. 
 
Figure 2.3 shows the Petri net from Figure 2.2 with two waiting vehicles in the entry 
zone and one vehicle currently being washed. The transition ’driving to the car wash’, 
which has no entry connector, constantly creates tokens (cars), while the transition 
’exiting the car wash’, which has no exit connector, removes the cars from the net 
again. If we assume that the place ’waiting at the car wash’ can take up any number of 
tokens, but only one can be stored in the place ‚washing’, the next step would be to 
switch (or fire) the transition ’exiting the car wash’ as soon as the time for the washing 
process has elapsed. Then the transition ’entering the car wash’ can fire, the next ve-
hicle is transported from the place ’waiting at the car wash’ to the place ’washing’, etc. 

2.2 Simple Nets  
As a basis for later descriptions, in this section we’ll present several characteristics of 
classic Petri nets. 
 
Marking 

As the marking of a Petri net the token occupancy of its places is used. It changes 
from the initial setting of tokens during the running of a net from step to step. The cur-
rent status of a net is defined by the current token occupancy. 



  
  

Getting Started with PACE - 12 -          

The initial marking of the net represented in Figure 2.5 is a single token on the place 
’car wash is empty’. 
 
Switching Rules  
The preceding description of a car wash specifies that the place ’washing’ may have 
only one token, while the place ’waiting at the car wash’ may have any number of to-
kens. In classic Petri nets, this requirement is realized using a so-called switching rule. 
Another option would be to specify the capacity of a place, which may later be ac-
cessed. 
 

                                
         Figure 2.4: Examples of switching rules 
 
The switching rule controls the situation when a transition has two or more input 
places, and says that the transition may only fire when all input places have at least 
one token. When it fires, one token is removed from each input place and used by the 
transition. A token is then generated at each output place. A transition whose input 
places each contain at least one token is designated as ’activated’. 
 
Figure 2.4 shows two nets with multiple input places. The transition in the left-hand net 
can fire exactly once, as one of its input places carries only one token. The transition 
in the right-hand net can fire twice, because there are two tokens in each input place. 
 
Using the switching rule, we can specify that the place ’washing’ in Figure 2.3 can al-
ways contain only one vehicle. To accomplish this we need to expand the net from 
Figure 2.3 as shown in Figure 2.5. We’ve added an additional place, ’wash is empty’ 
to the net elements from Figure 2.3. We’ve also assumed that the place ’washing’ and 
the waiting queue ’waiting at the car wash’ are empty. 
 
Since the transition ’driving to the car wash’ has no input connector, its firing is not 
condition-dependent. Consequently, it can fire first and send a token to the place ’wait-
ing at the car wash’. The transition ’entering the car wash’ can then fire, because there 
is now a token in both of its entry places. When it fires, a token is removed from each 
input place, and one is added to the place ’washing’. The transition ’entering the car 
wash’ cannot then fire again, because there is not a token in each of the two entry 
places. In the place ’washing’ there can be at most one token at any given time. The 
transition ’driving to the car wash’ fires again and sets a new token in the place ’wait-
ing at the car wash’. After washing, the transition ’exiting the car wash’ switches and 
sets a new token in the place ’wash is empty’. This makes the transition ’entering the 



                
 
 
 
 

 - 13 - Getting Started with PACE 

car wash’ ready to fire again, etc. 
 

 
  Figure 2.5: Car wash with control of the washing booths  
 
Double Connectors  
In most cases, two net elements are connected in only one direction, that is, with a 
simple connector. Such net elements are designated as ’pure’ elements. If the net 
consists only of pure net elements, the net itself is designated as ’pure’. An example of 
a pure net is shown in Figure 2.5. 
 
A simple case of two net elements doubly connected with a double connection would 
be if any number of tokens are to be produced. In the net shown in Figure 2.5, we ac-
complished this with the transition ’driving to the car wash’, which has no entry con-
nector, i.e., firing conditions, and consequently fires continuously. The same can be 
accomplished with the net shown in Figure 2.6, which uses a double connector. 
 
 

                  
              Figure 2.6: The wash street using a double connector 
 
When the transition ’entering the car wash’ fires, a token is also placed in the place 
’waiting at the car wash’ to represent the next vehicle to be washed. 
 
 
Reversibility  
A net is reversible if the inital marking of the net can be recreated from any desired 
later markings. 
 
All the example nets we have looked at so far are reversible. Most of the attributed 
Petri nets we will consider later are irreversible. 
 
Inhibitors 
Besides the normal connectors, there are inverting connectors (inhibitors) at which the 
transition just then may fire if no token lies on the place which is connected to the 



  
  

Getting Started with PACE - 14 -          

transition with the inhibitor. Inhibitors are represented by a little full circle on the ar-
rowhead of a connector. While tokens flow over normal connectors, this is not true for 
an inhibitor. It only steers the firing of the transition. 
 
Even with just one inhibitor, it is easy to ensure that the place ’washing’ can store at 
maximum only one token. In Figure 2.7, the wash queue represented in Figure 2.5 is 
modelled using an Inhibitor. 
 

 
                     Figure 2.7: The wash queue using an Inhibitor 
 

2.3 Attributes of Nets 
In order to accept the example nets we have shown as reality-proximate models of a 
car wash, at least two additional characteristics must be present: 
 
1. The statistically distributed arrival of the vehicles to be washed must be consid-

ered. 
2. The duration of a washing must be specified in the model.  
 
Such additional conditions are handled in PACE through net attributes. 
 
The two above requirements, along with the requirement that no more than one vehi-
cle may occupy the place 'washing' at any time, determines the capacity utilization of 
the simple wash queue we’re modeling, and can be fulfilled by adaptation of single net 
elements. The first requirement can be fulfilled with the transition ’driving to the car 
wash’, since that generates the tokens, i.e., the cars to be washed. The condition that 
only one token may be stored in the place ’washing’ is obviously a characteristic of 
that place. The second requirement can be handled as a delay in exiting the car wash, 
and consequently impacts only the ’exiting the car wash’ transition. 
 
Attaching attributes to net elements in PACE is done using net inscriptions or, inscrip-
tions for short. These are programming texts which are attached to the net elements 
and evaluated later in the execution of the net (simulation). Inscriptions, which have 
been used in all examples so far in this tutorial, are also the names or identifiers of net 
elements. 
 
Figure 2.8 shows the car wash model with attributed net elements. 
 



                
 
 
 
 

 - 15 - Getting Started with PACE 

 
Figure 2.8: Car Wash with Attributes 

 
Arrival of cars at the car wash was modelled with an exponential distribution with a 
mean value of 10 minutes, which provides the statistically distributed time spans be-
tween the arrival of two vehicles. The command is executed with each firing of the 
transition ’driving to the car wash’ and provides the time delay until the next firing of 
the transition. The ’washing’ place was assigned a capacity of 1, which appears in 
square brackets in front of the place’s identifier. This has the same effect as the steps 
described in the last section to limit the maximum number of tokens to 1. Finally, the 
exit from the car wash is delayed by 6 minutes, which means the washing procedure 
is intended to last 6 minutes. 
 
All together, this represents a simple model of a car wash in which several dynamic 
aspects are also considered. The model can thus be used to examine the condition of 
the real car wash in operation. 
 
An interesting point here is the place ’waiting at the car wash’, in which the queue of 
vehicles is stored before the washing booth. To get an impression of the conditions of 
the car wash in the anticipated arrival of vehicles, it is useful to attach a time histo-
gram to the place ’waiting at the car wash.’ 
 

                               
 

Figure 2.9: Distribution of different waiting queue lengths 
 
If you execute the net, the result will be as pictured in Figure 2.9. The bars represent 
the number of vehicles shown in the abscissa to the right of the bar. The bar ordinates 



  
  

Getting Started with PACE - 16 -          

assign the percentage of operating time in which the car waiting queue contains that 
number of vehicles. You can see from the illustration that only rarely do more than two 
vehicles sit in the queue, and that the waiting queue is empty about 36% of the operat-
ing time. It is easy to integrate additional system requirement specifications into the 
model, such as different numbers of vehicle arrivals in different day parts and weather 
conditions, different washing programs with varying wash times, the behaviour of driv-
ers who simply drive by if more than one vehicle is already waiting, or industry-specific 
requirements/conditions. 
 
Even the simple nets we’ve reviewed so far show, that to see the correspondence be-
tween a net and the reality can be difficult. In many nets, it is not easy to see exactly 
what they describe. This difficulty can be greatly reduced by using appropriate names 
for net elements and substitution symbols (graphics) for individual net elements. Fig-
ure 2.10 shows a snapshot of a net window during simulation, in which the net ele-
ments have been replaced with graphics (icons). The background is a picture of the 
entire car wash. 
 

 
 
                     Figure 2.10: A picture is worth a thousand words. 
 
With the three elementary static net elements transition, place and connector, an ap-
plication can be pictured as single process steps. If, for example, data are processed, 
they flow from one input place, which models a storage space, to the transition, in 
which the actual processing takes place, and after processing are stored in the output 
place, which again represents a storage space. Similarly, processing of products by 
machines, production runs on assembly lines, or the processing of administrative pro-
cedures in bureaucracies can be illustrated using attributed nets. You can look at an 
attributed net as a runable virtual model of the pictured real system, and use it for 
analysis and further development of the real system. 
 
 
 



                
 
 
 
 

 - 17 - Getting Started with PACE 

3.  Modeling a Car Wash 
 

3.1  The Basic Model 
 
PACE is used with a three-key mouse. For most PCs in use today the middle mouse 
key is a wheel which can also be used for clicking. To simplify the following descrip-
tions, the mouse keys will be identified as follows: 
 
           le.MK        left mouse key   Selects or marks an object 
  mi.MK       center mouse key  Shows the system menu 
 ri.MK         right mouse key  Shows the context-specific menu 
 
If you use the touch pad of a notebook with two buttons, normally the left button corre-
sponds to the le.MK, the right button corresponds to the mi.MK and the right button 
together with the control key of the keyboard corresponds to the ri.MK. 
 
After installing PACE, start the program using the Windows menu bar or call up Win-
dows Explorer, go to the PACE installation directory and double-click with the le.MK 
on the PACE icon pace2008.imm. 

After the start of PACE, the follow menu bar will appear on the monitor: 

  

                       Figure 3.1: PACE Menu Bar 

This is the starting point for model creation with PACE. The 
menu bar is accessible during all phases of work. You can use 
it to adjust, among other things, all system wide settings. 
 
To create a new model, click on new net in the File menu. This 
opens a query window in which you will enter the name of the 
new net. ’newNet’ is the default name. After inputting the 
model name Car Wash, press return. A frame will open for a 
window, the so-called net list, in which the modules of the net 
will later be listed. Move the window to your preferred location 
on the monitor, then click and hold the le.MK key. The cursor 
will move from the upper left corner to the lower right corner. 
This allows you to use the mouse to adjust the net list window 
to the desired size. Then release the key. The results are 
shown in Figure 3.3. In the case at hand, the list includes only 
one line with the name Car Wash. 
 
 

   

 

 

 
                         

 
 
 

 
 
 
 
 
 
 
 
 
 
 

 Figure 3.2: File Menu 



  
  

Getting Started with PACE - 18 -          

The File menu includes general file-related functions, such as loading a net (load net), 
saving the current net (store net), etc. 
 
Use the le.MK key to click on the line in the net list (select the line), use the ri.MK to 
open the net list menu, and select edit. The net win-
dow for the Car Wash will open in editing mode (Fig-
ure 3.4). The size of this window may be changed as 
usual in Windows. The net for the car wash can now 
be modelled in this window. Modeling is done by set-
ting the elements needed for the net under develop-
ment. These are entered interactively with the graphic 
PACE editor, which has menus available from which 
net elements may be selected. 

In the net window (that is, with the cursor in the net 
window) open the No-Selection-Menu by pressing the 
ri.MK key. As its name indicates, it is called when no net element in the window has 
been selected (at the moment, none exists yet). After selecting the menu option tran-

  

   3.3: Net-List and   
                    Net-List-Menu  

   

             Figure 3.5: Net window after fixing the Transition 

   
                 Figure 3.4: Net window and No-Selection-Menu 



                
 
 
 
 

 - 19 - Getting Started with PACE 

sition, a symbol for a transition will appear at the cursor position. Move the mouse to 
place it where you want it. Fix it in position by pressing le.MK (Figure 3.5). 
 
Similarly, the remaining net elements are inserted in the window, using the menu op-
tion place for places. If you select the wrong net element by mistake, you can delete it 
prior to fixing by pressing ri.MK. After fixing, a net element can be deleted by selecting 
it with the le.MK, then choosing the net element window with the ri.MK. There select 
the menu option delete. We will discuss net element menus in more detail later. The 
result is represented in Figure 3.6.   

 
If you are unhappy with the position of a net element and want to move it to another 
location in the net window, mark it with the le.MK. Then click again on the net element 
with the le.MK and hold the mouse key down. Move the element to its new spot with 
the mouse key held down, and then release the key. 

 
Next, set the connectors. Position the mouse cursor on one of the net elements, press 
the le.MK and hold it. With the key held down, move the mouse cursor onto the net 

 

               Figure 3.6: Net window without connectors 

                 

 

                Figure 3.7: Net window with connectors 



  
  

Getting Started with PACE - 20 -          

element which is to be connected. As mentioned earlier, places and transitions must 
alternate in the net. A connector is set and identified only if this condition is met. The 
result is shown in Figure 3.7. 
 
If you like, you can improve the look of the net by joining the connectors not at the nar-
row sides, but at the wide sides of the transitions. The standard transition icons must 
be turned 90 degrees to do this, as follows: 
 
Select one of the transitions with the le.MK. Use the ri.MK to highlight the transition 
menu, the submenu option Icon, and finally the menu option alternate. When this is 
done for all transitions, the net window will look as shown in Figure 3.8. 

 
Next, attributes need to be added to the net. 

Identifiers for individual net elements are inserted as follows: Mark the selected net 
element with the le.MK key (a black dot is drawn on the net element) and use the 
ri.MK to access the net element’s menu. Select the menu option naming comment 
(Figure 3.9). It opens the input window for net element identifiers shown in Figure 
3.10. 

   

   Figure 3.8: Net window with alternative transition representation 

      

                      Figure 3.9: Attributing of net elements 



                
 
 
 
 

 - 21 - Getting Started with PACE 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

After inputting the identifier, which may run across several lines like a comment, use 
the ri.MK in the menu of the text window and select accept. This assigns the identifier 
to the selected net element, and it is represented in the net window (Figures 3.10 and 
3.11). 
 

 
To move an identifier (the “naming comment“) to a different location in the net window, 
mark it with le.MK. Then click on the identifier again with the le.MK and hold the 
mouse key down. Move the identifier to the new position with the mouse key held 
down and then release. All the identifiers from Figure 2.3 can be entered and posi-
tioned in this way. You may wish to enlarge the window so all texts can be repre-
sented in the proper locations (Figure 3.13). 
 

                                        

         
                Figure 3.10: Entering and accepting  
                                  the identifier for a  
                                 net element 

            

              Figure 3.11: Net window with an identifier for a net element 



  
  

Getting Started with PACE - 22 -          

If you notice a typo or spelling error later, you can correct it by marking the identifier, 
pressing the ri.MK key and selecting menu option inspect. The 
text input window will open again with the text to be changed. 
After correcting it, select the accept menu option. By the way, if 
you choose menu option owner instead of inspect, the mouse 
cursor is positioned on the net element associated with the iden-
tifier. This function is occasional very useful in larger nets with 
many inscriptions. 
 
Next we’ll enter the attributes shown in Figure 2.8. Mark the 
transition 'driving to the car wash’ with the le.MK and select the 
transition menu with the ri.MK key (Figure 3.12). 
 
The menu includes the menu option codes with three submenu 
points, with which a transition may be matched to the task at 
hand. 

 
A transition can be refined with the following three code insertions: 
 
condition code: (green) Here you can formulate a condition under which the tran-

sition may fire. The code insertion must deliver a true or false 
value. 

 
delay code: (red) The code insertion calculates the number of time units by 

which the firing of the transition is to be delayed. 
 
action code: (blue) To represent a real object in a PACE model, the data rep-

resenting the object is attached to the virtual object (the token). 
The action code expresses the processing of the real object, as it 
calculates the data of the exiting tokens from the data of the in-
coming tokens. 

 
 

    

 
 
 
 
 
 
 
 
 
 

           

   Figure 3.12: Menu   
      for a transition 

          

           Figure 3.13: Net window with identifiers for all net elements 



                
 
 
 
 

 - 23 - Getting Started with PACE 

In the case at hand, only the delay code needs to be assigned. After selecting the 
submenu option delay code, an input window will open to receive the programming 
text (Figure 3.14). 

 
The text to be entered is a Smalltalk message. The bracketed expression (Exponen-
tial mean: 10) defines the exponential distribution with a mean value of 10 time units. 
The next value of the distribution is calculated with the unary operator next. By choos-
ing the menu option accept the text is added to the net element, as shown earlier with 
the 'naming comments’. If the text is to appear in a different location in the net window, 
move it as discussed earlier with a 'naming comment’ (see above). Use the same 
process in the transition 'exiting the car wash’, where you only 
need to enter the number 6. 
 
Assignment of simulator time units to physical time units is 
handled by assigning all time specifications in the model in the 
same dimension; in this case, all are in minutes. This implicitly 
sets the physical dimensions of the simulator time unit. 
 
To set the maximum number of tokens which may be stored in 
the 'washing’ place to 1, mark the place with the le.MK and 
choose the menu of the place with the ri.MK. If you select the 
menu option capacity, an input window will appear for entering 
the acceptable maximum number of tokens. 
 
When the window opens, a default value of 0 is assigned. This 
value means that any number of tokens may be stored. Replace the value 0 with the 
value 1 and press return key of the keyboard. The maximum number of tokens will 
appear in square brackets in front of the identifier 'washing’ in the net window. 
 
The net for the car wash is now done with the exception of the results output and pos-
sible improvements by inserting icons (see Figure 3.16). 
 

          

         
     
 
 

 
 
           Figure 3.14: Input and acceptance of   
                          the delay code 

                    
        

    Abb. 3.15: Menü     
  
 
 
 
 
 
    Figure 3.15: Menu        
            of a place 



  
  

Getting Started with PACE - 24 -          

 
To test the net, switch from the editor mode to the simu-
lation mode. At the bottom left of the net window, press 
simulate with the le.MK key. Then call up the simulation 
mode’s No-Selection-Menu (shown in Figure 3.17) with 
the ri.MK key. 
 
To test for error-free net functioning, select the menu op-
tion initialize + run. You can see how tokens (cars) en-
ter from the left, occasionally must wait in the 'waiting at 
the car wash’ place, and exit the car wash after passing 
through the 'washing’ place. To stop the simulation, mo-
ve the mouse cursor into the net window (where the cur-
sor is hidden) and press the le.MK.  
 
An overview of the characteristics of the waiting queue 
can be created using a time histogram which shows how 
the time percentally spreads out on the different  waiting queue lengths.. 
  
Open the menu of the place 'waiting at the car wash’ in simulation mode and select 
menu option diagram. Select the menu option time histograms in the diagram sub-
menu. This in turn has another submenu, where you will select standard. A frame for 
a graphic window will appear at the cursor position, which can be positioned and 
opened as described earlier (Figure 3.18). 
 
Before you can use the diagram, a scale must be set. You can scale the ordinates by 
moving the mouse pointer to the left frame and pressing the ri.MK there. A menu with 
three options will appear; select menu option maximum value. Enter the value 0.6 in 
the window which opens, and then press return. Using the inscriptions menu option, 
you can set the number of scale values. Enter the number 12 here. 
 
 

           

         Figure 3.16: Net window of the car wash with inscriptions 

        

  Figure 3.17: Net window      
   menu in Simulation mode 



                
 
 
 
 

 - 25 - Getting Started with PACE 

The abscissa is scaled analogously: Po-
sition the mouse pointer in the lower win-
dow frame and press the ri.MK. Here 
you fix the scaling, the maximum value 
and the number of bars. Input is done as 
just described in the scaling of the ordi-
nates. We are selecting the inputs from 
Figure 2.9: 
 

Minimum value  = -1 
Maximum value =  9 
Number of bars = 10 
Number of inscriptions = 10 

 
Figure 3.19 shows the result. Note that 
the number of bars is shown by the scale 
number at the right edge of the bars. 
 
If you want, you can now also introduce 
colors as in Figure 2.9. Bring the mouse 
pointer to the centre of the window and 
press the ri.MK. Select the menu point 
colors. A window will open in which you 
can select the foreground (color of the 
bars) and background color (color of the 
window). 
 
The car wash histogram is generated by 
calling up the net window menu in simula-
tion mode (Figure 3.17). This time, select 
menu option initialize + background run 
to quickly create the histogram (see Fig-
ure 2.9). The simulation may be halted by 
moving the mouse pointer into the net 
window and pressing the le.MK key. 
 
Except for inserting illustrating icons for net elements, this completes the basic model 
of a car wash. We’ll cover the procedure for inserting icons later. 
 
The model can be saved using the store image menu option in the PACE navigator’s 
File menu. This menu option opens a Windows window to save a file to the installation 
directory. It is useful to give the model a new name, e.g., CarWash. If you end the 
model using the leave PACE menu option, you can reload it later with the Windows 
Explorer by double-clicking on the name CarWash.imm. It appears on the monitor as it 
was when saved. 
 
In the next section, we’ll introduce several important characteristics of PACE useful for 
expanding the model. 
 

      

           FIgure 3.18: Histogram window  
                          before scaling 

   

           FIgure 3.19: Histogram window  
                               after scaling 



  
  

Getting Started with PACE - 26 -          

3.2 Multiple Washing Programs 
 
In describing action codes, we mentioned that the real objects are specified by tokens 
which carry their characteristic data. In addition to the objects data, other data impor-
tant for processing can be attached to a token and transported through the net. In car 
manufacturing, for example, such information could be a list of extras to be installed in 
the car currently being built. 
 
In the case at hand, let us assume that the car wash offers two different washing pro-
grams with respective wash times of 6 and 9 minutes. In addition, before the simula-
tion run, we want to be able to set the percentage of vehicles which use the shorter 
washing program, using a bar gauge. 
 
Access to token-associated data which runs through the net is provided with the help 
of connector variables. If we assume that the washing program is selected when en-
tering the washing station, the information must be transported by the token to the 
transition 'exiting the car wash’, so that the washing program and consequently the 
washing time are correctly set. 
 
Our starting point is the net shown in Figure 3.16. If you 
have been running simulations and the net window is in 
simulation mode, press the edit button in the lower left 
corner with the le.MK. Set the mouse pointer on the con-
nector between the net elements 'entering the car wash’ 
and 'washing’ and mark the connector by pressing le.MK. 
The marking is shown by a black dot on the connector. 
 
Use the ri.MK key to select the menu of the output con-
nector of a transition as shown in Figure 3.20. If you se-
lect the attributes menu option, a two-part window will 
open (Figure 3.21).  

 
The left part of the window gives the number of 
attributes or parameters which the tokens must 
show to be allowed to run across the connector. 
In Figure 3.21 we’ve specified one attribute that 
will serve for the current example. 
 
The name of the connector variable is given in 
the right part of the window. Position the mouse 
pointer in the right part, press le.MK and enter 
the text program. Please note that connector 
variables must begin with a lower case letter. 
 
Then, as demonstrated earlier, press ri.MK in the 
right part to call up the window menu and select 
menu option accept. The connector variable is 

now shown in the net window in parenthesis alongside the connector. As described 
earlier, it can be moved to a different location. 

        

 

 

 

 

        

  Figure 3.20: Menu for an  
      exit connector 

 

 Figure 3.21: Connector attributes 

                          



                
 
 
 
 

 - 27 - Getting Started with PACE 

So the selected washing program can reach the transition 'exiting the car wash’, the 
connector from the place 'washing’ to the transition 'exiting the car wash’ must also be 
attributed. If this is not done, the token which carries the washing program as an at-
tribute cannot continue, because so far the connector will only accept tokens without 
attributes. 
 
One could proceed here as above, by opening a window for the connector’s attributes, 
etc. This would, however, be very tedious when many connectors have to be equipped 
with the same attributes. It is much easier to use the copy function for attributes. 

 
To copy, mark the already-attributed connector and call up its menu with the ri.MK, 
then select menu option copy attributes. Then, mark the connector to be attributed, 
call up its menu with the ri.MK and select menu option paste attributes. The current 
status of the net window is shown in Figure 3.22. 
 
To input the percentage of vehicles which select washing program 1 with 6 minutes 
wash time, a vertical bar gauge will be used. To create such a bar gauge, call up the 
View menu in the PACE navigator, then select sub-
menu linear gauges and therein the submenu option 
bar gauge. A new frame for a graphic window will 
open, which may be adjusted as described earlier. 
 
As described earlier, a maximum scale value of 100 is 
set for the window. The scale can be further refined by 
setting the number of inscriptions to 10. 
 
To set the name of the window, position the mouse 
pointer in the window and press mi.MK. This brings up 
the system menu for the window. After you select menu 
option relabel as ..., an input window will open in which 
you can enter the name Percentage. Then use the 
le.MK key to press the ok-button. 
 
The bar gauge should now look as shown in Figure 

            

                  Figure 3.22: Net  window with connector variables  

          

        Figure 3.23:    
           Vertical Bar Gauge 



  
  

Getting Started with PACE - 28 -          

3.23. To set a new value, move the bar with the le.MK. 
 
To access the bar gauge in the model, it must first be connected to the model. This is 
best done at the beginning of a simulation run in the so-called initialization code. 
 
Select the Net Editor menu in the PACE navigator, then select the submenu extra 
codes and, within the submenu, choose initialization code. This opens a text window 
for inputting the programming code which is to be executed at the beginning of the 
simulation run. Input the following text in the text window: 
 
       PercentageWashprog1 := BarGaugeValue named: 'Percentage'. 
 
As described earlier, this text is accepted by pressing the right mouse key in the Ini-
tialization window (i.e., with the mouse pointer in the initialization code window) and 
selecting the menu option accept. 
 
The input line will not be automatically accepted, because the identifier Percentage-
Washprog1 is as yet unknown. A query window will appear, in which you should 
press the global button with the le.MK. This declares the PercentageWashprog1 as a 
global variable which is recognized throughout the entire model and whose contents, 
the assigned bar gauge, can be accessed throughout the whole model. Global vari-
ables begin with a capital letter. 
 
The washing program is selected when entering the car wash. So, as described ear-
lier, call up the menu of the transition ’entering the car wash’ and select menu option 
action code. A new text window will open in which you can enter the action code to 
be executed when firing the transition: 
 
 barvalue := PercentageWashprog1 value. 
 program := (Bernoulli parameter: barvalue / 100) next 
 
The first line assigns the set value of the bar gauge to the transition’s local variable 
barvalue. In the second line, the ’’next“ value of a Bernoulli distribution with the prob-

 

                         Figure 3.24: Net window with action code 



                
 
 
 
 

 - 29 - Getting Started with PACE 

ability ’barvalue / 100’  is assigned to the connector variable program. It returns a 
value of 1 if washing program 1 is to be used, otherwise the value 0. 
 
The program code is once again attached to the transition with the accept-function. 
Here again a window will open saying that the variable ’barvalue’ is unknown. This 
time, press the temp button and the variable ’barvalue’ will be set as a local variable 
of the transition. The action code for the transition can again, as described earlier, be 
moved to the appropriate place in the net window. The current status of the net win-
dow is shown in Figure 3.24. 
 
When the net is running, the current value of the Bernoulli distribution is assigned to 
the token (the vehicle). You can access it via the connector variable ’program’. To set 
the correct delay time (wash time), change the delay code of the ’exiting the car wash’ 
transition as follows: 
 

      program = 1 ifTrue: [6] ifFalse: [9] 
 
This is a conditional message. It returns the result 6, if program = 1 (in other words, if 
washing program 1 was selected); else it returns a value of 9. 
 
When changing a transition’s code, it is not necessary to use the transition menu, but 
rather one can change the code directly. Mark the current delay-code in the transition 
’exiting the car wash’ with the le.MK. A small black dot is displayed in the middle of 
the code. Call up the code menu with the ri.MK key and select inspect. A window with 
the current delay-code will open. In this window, change the current code 6 to the 
conditional expression we have just discussed, and save it to the transition with ac-
cept. 

 
The net window is shown in Figure 3.25. Reviewing the window you can imagine that 
with much longer inscriptions the net can become confused. To avoid that, you can 
hide the transition-code and replace it with three dots (...). To do this, call up the menu 
for the code again and, instead of accept, select the Three-Dot-menu on the last line 
of the menu. The inscription in the net window is replaced by three dots in the respec-
tive text color. The three dots are generated at the upper left corner of the previous 

 

                         Figure 3.25: Net window with Extra Codes 



  
  

Getting Started with PACE - 30 -          

inscription. To see which transition the code belongs to, call up the Three-Dot-menu. 
Mark the Three-Dots with the le.MK key, call up the appropriate menu with the ri.MK 
key, and select owner. The mouse pointer is placed on the transition to which the 
Three-Dots belong. 

 
It’s a better idea to move the three points in the net window into the vicinity of the tran-
sition to which they belong. This is done exactly as described earlier for other inscrip-
tions. Figure 3.26 shows the net window with some inscriptions replaced by three 
dots. 
 
If you want to return to the inscription 
text instead of the three dots, mark the 
dots and use the ri.MK key to select 
menu option inscript. A text window 
with the inscription will open. In this 
window, use the ri.MK to again select 
Tree-Points-Option ... . This menu op-
tion works like a toggle switch. You 
can, of course, also use the transition 
menu to point to the inscription hidden 
behind the three points. 
 
With this, the model is finished and one 
can return to the simulation mode to 
experiment with the model. If you set 
the ’Percentage’ bar gauge controller to 
100%, you will again get the result 
shown in Figure 2.9. If you set the con-
troller to 0%, the result is as shown in 
Figure 3.27. It shows a much better efficiency of the facility, caused by much longer 
waiting queues. 
 
 

 

                    Figure 3.26: Net  window with Three-Point-Codes  

    

    Figure 3.27: Time increments of different  
                 waiting queue lengths with a wash  
                 time of 9 minutes 
 



                
 
 
 
 

 - 31 - Getting Started with PACE 

 
3.3 Runtimes 
 
In this section, we will discuss working with simulation times. The current simulation 
time is stored in the global system variable CurrentTime and is set to zero when ini-
tializing a model. 
 
In discussing net changes, we can be somewhat briefer here, as many of the editing 
steps have already been described multiple times. The changes are shown in Figure 
3.28. 

 
An additional connector variable ’time’ is introduced for all connectors. With one of the 
two right-hand connectors, proceed as follows: in the connector attribution window 
(Figure 3.21), call up the selection menu in the left part of the window with the le.MK 
and select menu option insert. An additional connector variable is added in front of 
the already existing variable. If you want to set the variable after the other pre-existing 
variable, deselect the selected, yellow-highlighted variable by clicking on it with the 
le.MK, use the ri.MK key to call up the No-Selection-Menu and then select menu op-
tion add. In the right part of the window, enter the identifier time and choose accept. 
The second of the two connectors on the right can be attributed, as before, by copy-
ing. 
 
In the transition ’driving to the car wash’, the connector variable time is assigned the 
current time:  

time := CurrentTime. 
 

After going through the car wash, the runtime is: 
 

CurrentTime – time. 
 

 

                                      Figure 3.28: Changes in the net window  



  
  

Getting Started with PACE - 32 -          

It is interesting to look at the distribution of the runtimes. To do this, select the menu 
option histograms in the Views menu of the PACE navigator, and select counts in 
the submenu. In this example, the count-histogram shows the number of tokens (vehi-
cles) across the runtime. The window is given the name ’Distribution of Runtimes’ 
(mi.MK) and is scaled as follows (Figure 3.29): 
 

Ordinate: Maximum value = 3200 
Number of inscriptions = 10 

 
Abscissa: Maximum value = 60 
   Number of inscriptions = 10 
   Bars = 60 

 
The count-histogram is attached to the model as before in the initialization code. This 
is expanded with the lines: 
 

DZDistribution:= CountHistogram named: 'Distribution of Runtimes'. 
DZDistribution clear. 

 
The second line clears the contents of the histograms during initialization. 
 
The action code in the transition ’exiting the car wash’ is expanded with the output 
code for the standard histogram. The expansion is as follows: 
 

DZDistribuiton addValue: CurrentTime – time. 
 
If you execute the model with a percentage of 50%, you will get the runtime distribu-
tion shown in Figure 3.30. 
 

        

                    Figure 3.29: General Count Histogram 



                
 
 
 
 

 - 33 - Getting Started with PACE 

In this result, you will get very large unrealistic runtimes. They stem from the large wai-
ting queues which appear in the model, but which do not really occur in actual prac-
tice, as drivers no longer enter a waiting queue of more than approximately 3 vehicles. 
This condition will be considered in the expanded model (Chapter 4). 
 
 

 

3.4 Iconizing 
In general, one cannot simply see which processes are represented in a net. The user 
who is to use the model later and who is usually only peripherally interested in the 
model’s implementation, can work better with the model when the default net elements 
are replaced by application-specific pictures (Figure 2.10). We’ll now describe how 
that is done. 
 
The graphics needed here are stored in the icon file CarWash.icn in the nets direc-
tory of the PACE installation directory. To load them, mark the line CarWash in the net 
list. Then select the Extras menu on the PACE navigator and select the icons sub-
menu. Finally, select menu option icon file. 
 
A window for loading an icon file will open. It shows the entries in the nets directory. 
Select the file CarWash.icn, which is loaded into the model either by doubleclicking 
on the entry in the Explorer list or by pressing the Open button. 
 
To look at the icons you’ve loaded, select menu option icons in the Extras menu, and 
option individual icons in the submenu. A window will open with a list of the names of 
all stored icons (graphics). Click on a name with the le.MK, and its graphic will appear 
in the upper right corner of the window as long as the mouse key is pressed down 
(Figure 3.31). 
 

             

                         Figure 3.30: Distribution of Runtimes 



  
  

Getting Started with PACE - 34 -          

The selection menu for this window is also interesting. It may be called up as usual 
with ri.MK. We recommend that you experiment with the different menu options, in 
particular replacing an icon (from screen, from clipboard, etc.), scaling an icon 
(scale), and fading an icon (fade). The graphics WholeCarWash1 and WholeCar-
Wash2 are one-step and two-step fades of the WholeCarWash graphic. You can 
change a graphic with the Icon Editor. The No-Selection-Menu of the window contains 
only the menu option add, with which a new name may be added to the list. This may 
then be assigned a graphic with one of the from-menu options. 

 
In the net shown in Figure 3.28, the transition 'driving to the car wash' is marked, and 
the menu option individual is selected in the icon submenu. In the window which 
opens, select the ‘drivingToCarWash’ line and press the ok-button. The inscriptions 
may be partially covered by the graphic and should be moved accordingly. Similarly, 
assign graphics to the other net elements for 'waiting’, 'enteringCarWash', 'washing', 
and 'exitCarWash'. All code inscriptions can be replaced with Three-Dot inscriptions. 
 
To represent the title of the window, you can insert a net element, e.g., a place or a 
transition, to the spot in the window where you’d like the title to appear later. That net 

    

Figure 3.31: Icon list 

 

                           Figure 3.32: Iconizing elements in the net window  



                
 
 
 
 

 - 35 - Getting Started with PACE 

element is replaced by the graphic 'Heading'. 
 
The current status of the net window is shown in Figure 3.32. 
 
If you want to replace the standard symbol for a token (a small solid black circle) by 
graphics of the object which moves through the net, the procedure is as follows: mark 
the output-connector (of a transition) over which the icons should cross and call up its 
menu with the ri.MK. Then select menu option icon function and select edit in the 
submenu which appears. The window shown in Figure 3.33 will appear. 
 
This window includes a Smalltalk-Block which is evaluated each time the token 
crosses the connector. The block delivers as its output the name of the icon to be 
used, in the form of a so-called symbol. A 
symbol appears as a number sign # in front 
of the name (Example: #limousine).  
 
If the result of the block is only one name, it 
will always run the assigned icon over the 
connector. The block then looks like this: 
 

[:t| #limousine]. 
 
As before, the code becomes functional by 
clicking accept in the ri.MK menu of the 
window. Then close the icon window. 
 
Again, use the copy function to attribute token icons to the second output connector, 
which runs from the transition 'entering the car wash' to the place 'washing'. Mark the 
connector you have just attributed, then select menu option icon function and exe-
cute the copy command in the submenu. Now mark the second exit connection, call 
up icon function again and select paste. 
 
If you like, you can also set a background graphic. In the No-Selection-Menu of the 
window in Figure 3.32, select the insert background image menu option, then select 
the WholeCarWash2 line in the window which opens. To avoid disruptive flickering 
during editing, background graphics should be added at the completion of a module or 
model. 
 
With this, the net is set and you can exit PACE. In the File menu of the PACE naviga-
tor, select leave PACE. A query window will appear which asks if you wish to save the 
model. To say, answer yes. The rest of the operation has been described earlier (at 
the end of Section 3.1). PACE will close automatically after saving the model. 

       

       Figure 3.33: Window to specify a   
                           token icon                   



  
  

Getting Started with PACE - 36 -          

4. Components (Modules) 
 
In our language, we need concepts for complex relationships so we can express our-
selves clearly and efficiently. Similarly, in nets one has an option of using closed sub-
nets to represent specific partial tasks. These are called components or modules. Only 
with such groupings can we represent reality-based hierarchies and get a better over-
view of the nets: the nets become understandable. 
 
Many simulator development systems only use pre-defined components and create 
simulations out of these. Since the real world is not one-size-fits-all, this procedure 
often requires quite a number of hard-to-understand adaption parameters with which 
the predefined modules are fitted to the current situation, and which can turn the de-
bugging process into a time-consuming activity. In spite of the extra effort, the result-
ing models only roughly reflect the actual situation and often deliver results with limited 
validity. Fitting the model to reality by changing the modules is difficult and can usually 
be done only by specialists. 
 
PACE takes a different approach, providing means for exact replication of reality in a 
model that can be animated and verified step-by-step. To represent the hierarchical 
structure of process systems, reusable components (also called modules or subnets) 
can be created using the net elements described previously. Thus you can use 
PACE’s features to create adaptable components and component libraries which can 
be altered and expanded by the user if they don’t fit the specific situation or don’t ac-
curately represent reality. 
 

4.1   Creating a Component 
The goal of this section is to create the adaptable module CarWash, which can be 
used in other models. It is to be adaptable to the car wash at hand via the following 
four parameters: 
 

Washtime1   
Washtime2 
Percentage 
Waitingqueuelength 
 

As its result, it should deliver (in the form of a token attribute) the runtime for the just-
washed vehicle. By runtime we mean the time span between arrival of the vehicle at 
the car wash and its departure (see Section 3.3). The four parameters in question we-
re discussed in previous sections. 
 
The current plan differs from the models in Chapter 3 in that the adaptation will involve 
no net changes. All fitting is done by pre-establishing arguments (parameters). This 
way, later users of the module need no detailed knowledge of how the module was 
built, but must only know which task the module solves, what the adaptation parame-
ters mean, and how they can be adjusted. 
 



                
 
 
 
 

 - 37 - Getting Started with PACE 

Basically, there are two options for creating a module: 
 

• Start with an empty module and build a new net. 
 
• If a usable starting net already exists, modify it as desired and generate the 

new module from its net elements using menu option coarsen. 
 
While the second option above is useful for users with PACE-experience, we will se-
lect here the first option, as a description of changes to be executed would distract 
from what is important in this discussion. 
 
Start with a new model, and give it the name 
ModuleDevelopment. After opening the net 
window, use the No-Selection-Menu to create 
the three net elements shown in Figure 4.1 
and connect them via connectors. The net 
element represented by the square is a mod-
ule and is created using menu option mod-
ule. 
 
The net elements are identified as shown in 
Figure 4.2. 
 
In the case of a module, the default module 
identifier m1 is to be replaced with the identi-
fier 'CarWash' by marking m1 with the le.MK, 
then opening the input window for the module 
name in the ri.MK window with menu option 
inspect. Enter the name CarWash and use 
menu option accept in the ri.MK menu or 
press the Return key. 
 
To make the module 'CarWash' independent 
of its environment, no external relationships 
may appear. Thus, it is not possible to repre-
sent parameters like Washtime1, Washtime2, 
etc., as global variables as we did previously. 
It would also not be helpful to declare the 
global variables after the insertion in the 
model in which the module is to be included! 
If the module is inserted more than once, all 
inserted modules would access the same global variables. It would not be possible to 
have CarWashes with different wash times without changing the nets of the modules. 
   
To model closed modules, we have to introduce net or module variables which are 
known to the whole module and, if they exist, its submodules. To declare the parame-
ters given at the beginning of this chapter as net variables, mark the 'CarWash' mod-
ule and select menu option net variables in the ri.MK menu. The window shown in 
Figure 4.3 opens to declare the net variables. Insert the name of the net variables in 

      

             Figure 4.1: Exit net 

       

         Figure 4.2: Exit net with legend  
                       



  
  

Getting Started with PACE - 38 -          

the form of symbols in the left part of the window. In the right part of the window, you 
can use the buttons initial value or current value to set values. The value designated 
as the initial value is assigned to the net variables at initialization of a model. 
 
Select menu option add in the ri.MK menu in 
the left part. An input window will open in 
which you can enter the name of a net vari-
able in the form of a Symbol (that is, with a # 
sign in front of it). Then enter #Washtime1, 
and finish by pressing Return. Then position 
the mouse pointer in the right part of the win-
dow, enter the wash time 6, and select ac-
cept in the menu of the right part. Then dese-
lect the identfier #Washtime1 in the left part  
(click on the identifier with the le.MK and the 
yellow highlighting will disappear). Then enter 
the other net variables shown in Figure 4.4 
and assign them their respective initial values 
of 9, 50 and 0. 
 
Net variables are accessed via messages. 
The current value of the net variable Wait-
ingqueuelength is produced by the following 
message: 

 
 (self at: #Waitingqueuelength) value 

 
The value 40 can be assigned to the net vari-
able #Percentage by entering: 
 

(self at: #Percentage) value: 40 
 
The net window of the CarWash module is 
selected by marking the module and choosing 
the menu option subnet in its ri.MK menu 
(Figure 4.5). The module window which opens shows both places, 'entry' and 'exit,' 
which constitute the interfaces to the module’s environment. To indicate that these are 
declared outside the module (that is, within the module they only serve as placehold-
ers), they are shown paler (faded) in the net of the module. 
 

     

     Figure 4.3: Window for agreement    
                    of net variables 
 

   

     Figure 4.4: Window with agreeing    
                       net variables 
 



                
 
 
 
 

 - 39 - Getting Started with PACE 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In the module, you’ll next draw the net shown in Figure 4.6 without code inscriptions. 
Those will be discussed later. 

 
 
Since arrival at the car wash proceeds from outside, the Transition 'driving to the car 
wash' requires no delay code, unlike in Chapter 3. The action code reads: 
 

time := CurrentTime. 
temp := (self at: #Waitingqueuelength). 
temp value: (temp value + 1). 

 
The first line stores the current simulation time in the connector variable 'time’. During 
simulations, it is transported through the net with a token and, in the transition 'exiting 
the car wash’, compared with the current time at that point. The difference is the 
length of time, the runtime, that the vehicle was in the car wash. 
 
In the next line, a temporary variable 'temp' is introduced, to which the object net vari-
able 'Waitingqueuelength' (not its value!) is assigned. In the third line, the message 

    

                 Figure 4.5: Net window after opening 

 

                  Figure 4.6: Net of the ’CarWash’ module without code inscriptions 



  
  

Getting Started with PACE - 40 -          

described above to set the value of a net variable is used, to increment the net vari-
able 'Waitingqueuelength'. 
 
Since the transition-local variable 'temp' is unknown, the menu option accept brings 
up a selection menu for defining 'temp' 
by pressing the temp button (Figure 
4.7). 
 
To see the current local variables in a 
transition, select the menu option tem-
poraries in the transition’s ri.MK menu. 
Here you can add more local variables 
with the No-Selection-Menu’s  add 
function, as well as renaming or delet-
ing selected temporary variables with 
the ri.MK menu (careful!). 
 
The action code of the transition 'en-
tering the car wash' must reduce the Waitingqueuelength by 1 and then select the 
washing program. It reads: 
 

temp := (self at: #Waitingqueuelength). 
temp value: (temp value - 1). 
barvalue := (self at: #Percentage) value. 
program := (Bernoulli parameter: barvalue / 100) next. 

 
Interpreting this should be no problem given earlier descriptions. 
 
Now we only need the delay code and the action code for the transition 'exiting the car 
wash'. 
 
The delay code can be drawn from the earlier code (see Figure 3.25). It reads: 
 

program = 1 ifTrue: [(self at: #Washtime1) value] 
             ifFalse: [(self at: #Washtime2) value]. 

 
The action code stores the runtime in the connector variable runtime: 
 

runtime := CurrentTime – time. 

  

  Figure 4.7: Query window to determine  
                    the variable temp 



                
 
 
 
 

 - 41 - Getting Started with PACE 

 
Now all that remains to be done is documentation: the type of work most unpopular 
with developers (but so important for quality assurance and for the information of later 
users of the module!). PACE offers several options: 
 
1. Information about the development of the module   

Mark the module CarWash in the net list, then use the ri.MK to call up the win-
dow’s selection menu and select menu option development info. It opens a win-
dow for entering information about the development. Save the information with 
accept. In the case of module problems or later expansions, this information can 
make it possible to find the changes which have been made and identify the de-
velopers of the module. 

 
2. Describing the module 

Individual net elements are documented with entries which are attached to the net 
elements. In the case at hand, mark the net module in Figure 4.2, open the mod-
ule’s menu with the ri.MK key, and select purpose description. A text window 
will open into which you can enter the module information. 
 
 

 

                  Figure 4.8: Net of the ’CarWash’ module with code inscriptions  

             
        Figure 4.9: Development Info for the 'CarWash' module 



  
  

Getting Started with PACE - 42 -          

As an example, Figure 4.10 shows the most important entries in the module 
'CarWash' for use by later users. In the module’s net, additional implementation-
specific entries can be attached to the net elements in use. 

 
For models, PACE also offers an option for creating a user manual which is bundled 
with the model and can be called up at will. You can access it with the menu option 
model user manual in the Extras menu on the PACE navigator. 
 
This completes the module 'CarWash' (Figure 4.8), which must now be stored in a 
directory. Generally, the modules directory in the PACE directory (the directory from 
which PACE is started, i.e., in which the started Image is stored) is intended for this. 
Users can also use their own directories, for example, to prepare a package of mod-
ules for a specific application area. 
 
All of the model’s modules are listed in the 'Net List' window. If the model 'CarWash' is 
not already there, click in the window with the le.MK. This refreshes the window and 
shows the latest status. Mark the CarWash modules with the le.MK, then call up the 
menu option store module in the PACE navigator’s File menu. A standard Windows 
window will appear for saving a module to a pre-set directory modules. If you press 
the Save button, the module is saved with the name CarWash.sub in the modules 
directory of the PACE directory. 
 
After this, you can exit PACE as previously described. 
 

               

                         Figure 4.10: Purpose Description for the  'CarWash' module 



                
 
 
 
 

 - 43 - Getting Started with PACE 

4.2 Using Components 
 
To show how a module can be inserted into a model, we’re now going to create a mo-
del of a street attached to the car wash we have modeled. To keep things simple, 
we’re going to assume a one-way street, that is, we’ll only need to specify the flow of 
traffic in one direction. 
 
We’ll start again with a new model, which we’ll give the name 'CarWash Street'. The 
street and its driveway into the CarWash is shown in Figure 4.11 and can easily be 
replicated. 

 
The module we created in the last section is inserted as follows: execute menu option 
restore module in the net window’s No-Selection-Menu. It opens a window for the 
selection of the module. The default is the modules directory in the PACE directory. 
Select the file CarWash.sub and press the Open button. At the mouse pointer posi-
tion, a frame will appear which can be moved to the desired position of the module in 
the net window. After the move press the le.MK button. Figure 4.12 shows the result. 

      

                    CFigure 4.11: One-way street with connection points for a car wash 



  
  

Getting Started with PACE - 44 -          

 

                         

                     Figure 4.12: Net window after entering the module ’car wash’ 

 

                                 Figure 4.13: Street with tacked-on car wash 



                
 
 
 
 

 - 45 - Getting Started with PACE 

Now shift the individual net elements to the desired positions and connect the inter-
faces (the places 'entry' and 'exit') with the net for the street. The result is the net 
shown in Figure 4.13. 
 
To finish the adaption, set the net variables for the 'CarWash' module as follows: 

 
Washtime1 = 7  
Washtime2 = 10 
Percentage = 60. 

 
and draw the connector from the place 'exit' to the adjoining transition. The last is 
needed so that tokens with the attribute runtime can flow across this connector with-
out hanging up at the place 'exit'. The required steps for this were already described 
earlier . 
 
Figure 4.14 shows the net with all inscriptions. 

 
The delay code of the uppermost transition says that in the mean, a vehicles arrives 
every 12 seconds at the modelled piece of street. The action code specifies which 
cars will be washed. A connector variable 'washing' is introduced here, which is as-
signed a 'true' or 'false' value in the action code. These values are stored as argu-
ments in the outgoing tokens. 
 

 

                                  Figure 4.14: Street with car wash inscribed 



  
  

Getting Started with PACE - 46 -          

Depending on the value of this argument, a token will exit from the attached place ei-
ther to the right (true) into the car wash, or downward (false) past the car wash. Here 
we apply the rule that a token can only pass a connector when the number of argu-
ments for the token and the number of connector inscriptions are the same. If connec-
tor constants are specified (in this case, the values 'true' and 'false'), the arguments 
assigned to the token and the connector inscription must match. Thus, if the token has 
the value 'true' (or, as the case may be, 'false,') it can only pass to the connector lead-
ing to the right, (or, as the case may be, below). 
 
The action code consists of an assignment whose right side consists of two condi-
tional expressions joined by and: (logical and). The first expression: 
 

RandomNumber next < 0.02 
 
uses the global system variable RandomNumber which can generate uniform distrib-
uted random numbers between 0 and 1. The next method delivers the next random 
number. If this number is smaller than 0.02, so in the mean in 2% of all cases, the ex-
pression is returned as true. Else, it is returned as false. 
 
The second expression accesses the net variable #Waitingqueuelength in the ’Car-
Wash’ module. The net variable (not its value!) comes from the expression: 
 

self moduleNamed: ' CarWash Street.CarWash' at: #Waitingqueuelength. 
 
The module is thus identified by the string ' CarWash Street.CarWash', in which the 
modules, beginning with the root ‘CarWash Street' are concatenated sequentially, 
separated by dots, as they are hierarchically ordered in the 'Net List' window. Using 
the value method, the value of the net variable is read. If it is smaller than 3, the ex-
pression is returned as true, otherwise false. Drivers only go to the car wash when 
fewer than 3 vehicles are in the waiting queue. 
 
The and-connection for the expressions says: If the vehicles falls into the 2% which 
will be washed, and the length of the waiting queue in front of the car wash is smaller 
than 3, then the car will drive into the car wash. 
 
The inscription of the transition attached to the 'exit' place, 
 

TimeDistribution addValue: runtime. 

assumes that a count histrogram was created and assigned in the initialization code: 

TimeDistribution :=  CountHistogram named: 'Distribution of Runtimes'. 
TimeDistribution clear 

Because of the changed parameters, the scaling of the histogram has also been 
changed from its earlier version (Figure 4.15). 
 
If you switch to simulation mode and execute the net as background run, the runtime 
distribution shown in Figure 4.15 will apply. 



                
 
 
 
 

 - 47 - Getting Started with PACE 

 
The distribution of time in the different waiting queue lengths can be shown as before. 
In the View menu of the PACE navigator, a standard histogram is generated with the 
name 'Waitingqueuelength'. 
 
The initialization code is expanded by the following two lines: 
 
      WSLDistribution := StandardHistogram named: ' Distribution of Waiting Queues'. 
      WSLDistribution clear. 
 
The action code of the transition connected to the place 'exit' is expanded by the fol-
lowing inscription: 

     WSLDistribution addValue: (self moduleNamed: ' CarWash Street.CarWash’ 
                                                             at: #Waitingqueuelength) value. 
 

If you execute a simulation run, you will get the histogram shown in Figure 4.16. It 
shows that the waiting queue is empty about 60% of the time, that about a quarter of 
the time a car is waiting to be washed, etc. 

 
Figure 4.17 on the next page shows an interface of the simulation model for carrying 
out experiments. You achieve this by arranging the PACE windows. The window in the 
upper right, with which the animation speed can be set, is opened with the menu op-
tion animation speed in the PACE navigator’s Simulator menu. 

 

  Figure 4.16: Distribution of waiting queues 
 

   Figure 4.15: Distribution of runtimes 



  
  

Getting Started with PACE - 48 -          

This completes the model, and it can be saved as described earlier . 

It’s noteworthy that for creating this model, the interface description of the CarWash’ 
module was sufficient. This is the underlying requirement for preparing module librar-
ies and  for creating simulation models from pre-existing components (modules). 
 

 
 

 

                            Figure 4.17: Work interface for experimenting 



                
 
 
 
 

 - 49 - Getting Started with PACE 

 

5.  More Useful Features 
 
In this chapter, we’ll briefly discuss several useful features of PACE simply to intro-
duce them. They are described in detail in the PACE 'Modeling and Simulation’ man-
ual.  
 
5.1 Defining and Changing the Standard Representations of 
Net Components 
 
The standard icons can be changed for any net. Changes are made using the Extras 
menu, 'icons',  'default icons'. With 'change’ you can replace the pre-defined icons 
with any other pre-defined icons, or with icons stored in the list of individual icons. 
'scale’ changes the size of the pre-defined icons. 
 
You can also scale the standard representation of individual net elements. Select me-
nu option scale in the ri.MK menu of the net element and enter the scaling factor in 
the window which opens. Then hit return or select accept in the input window’s ri.MK 
menu. 
 
Additional changes of net components can be made with the options menu in the 
Net-Editor menu of the PACE navigator. 
 
Here, for example, you can change the size of a connector’s arrow points by using 
menu options arrow length and  arrow angle in the options menu. Element size 
changes the absolute size of all elements in the net (with the exception of 'individual 
icons’). Finally, you can use grid to more precisely position the net elements. 
 
5.2  Colored Nets 
 
PACE offers the option of displaying the window and net components (icons, texts, 
etc.) in different colors. The available colors can be viewed by selecting 'show default 
platform colors’ under the colors menu option of the PACE navigator’s View menu. 
 
You can call up the function for changing the colors via the view menu‚ colors, net 
constituents colors. A window will open listing the most important components of 
PACE nets (Figure 5.1). The current color of the component is shown to the right of 
the identifiers. Use 'change’ to change the colors. A selection menu for the individual 
colors will appear. Mark your preferred color and press the ok-button. Using the scroll-
bar and the right edge of the window you can scroll to additional colors. The new color 
settings are stored in the model, i.e., in the so-called Image, so the model (Image) 
must be saved with store image after changing. 
 
 



  
  

Getting Started with PACE - 50 -          

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                             Figure 5.1: Changing the color of a net component 



                
 
 
 
 

 - 51 - Getting Started with PACE 

5.3 Initialization code, break code, continuation code  
             and termination code 
 
These functions are called up with the extra codes menu option in the Net-Editor 
menu. Here you can enter Smalltalk-code to be used during initialization (initialization 
code), interruption (break code), continuation (continuation code), or termination 
(termination code) of a simulation run. 
 
 
5.4 Special Bars for Simulation; Freezing Models 
 
To simplify the use of ready models which can, for example, be used in daily practice 
by people without a knowledge of PACE, there are eight special bars (Executives) one 
can add to a model (e.g., see Figure 5.2). These bars contain control functions for 
execution of simulation runs so that models can be used without the need for menu 
skills. 
 
To open an Executive in the Simulator menu, select the install executive menu op-
tion. You can make the Executive horizontal or vertical by choosing menu options 
horizontal layout or vertical layout. Then select one of the four possible Executives. 
 

To prevent inexperienced users from inadvertently changing models, models can be 
’frozen’ with an Executive in place. When a model is frozen, the PACE navigator and 
the net list are removed so no further change or expansion of the model is possible. In 
addition, most of the ri.MK menus will no longer be accessible, and all windows pre-
sent at the moment of freezing cannot be closed. On the other hand, data can still be 
added, e.g., via the data input windows, by selection with the le.MK or by text inputs. 
This creates an easy usable application model which can be controlled only via an 
Executive and input windows. 
 
 
5.5   Scenes 
 
When creating larger models, the screen is almost always too small to show all the 
required windows (net windows, Executives, graphic in/output windows, etc.) at the 
same time. Usually, however, you don’t need all of the windows concurrently. PACE 
allows you to group (into so-called Scenes) the windows which should be shown to-
gether, to make them appear or disappear together with the push of a button (le.MK). 
This allows you to prepare a well-organized user interface that is easy to overview. 
 

 
                      Figure 5.2: Short horizontal navigator 



  
  

Getting Started with PACE - 52 -          

Scenes are easy to assemble. The definition window is accessed via the define sce-
nery menu option in the PACE navigator’s Extras menu. It consists of two parts. 
Scene names can be entered in the No-Selection-Menu of the left window part (menu 
option add). When the Scene name is marked in the left part, you can use the No-
Selection-Menu option add in the right part to enter the name of a window to be con-
tained in the Scene.  
 
We recommend, particularly for longer window names, that you do not simply type in 
the name, but proceed as follows: activate the window to be included in the Scene and 
call up its system menu with the mi.MK key. In the System menu, select the relabel 
as... option. An input window for the new window name will appear, in which the cur-
rent name is marked. Now call up the input window’s ri.MK menu, select copy, and 
finish by pressing ok. Then use the No-Selection-Menu of the right-hand window of 
the define scenery window and select add. In the query window for the name call up 
the ri.MK menu and select paste. Finally, close the input window with the Return key. 
 
Once you have organized all Scenes, close the define scenery window and open the 
selection window for Scenes with the menu option select scenery in the Extra menu. 
There you will find a list of all Scenes. If you select (or de-select) a name in this win-
dow, the assigned Scene is either displayed or iconized. 
 
When designing interfaces, the usual procedure is to show a basic permanent set of 
windows which are then sometimes covered by Scenes. It should be noted that, dur-
ing simulation, Scenes can also be programmed to be shown or hidden. This is par-
ticularly useful if different graphic evaluation windows are to be shown or for parame-
ters input during simulation. 
 
 
5.6   Model Dictionary 
 
In later development or analysis of models it can be tedious to try to extract the exact 
meaning of program entities from the context. The model dictionary described here 
provides users an easy opportunity to capture this information during development of 
a model and to make it available with the model when the model is completed. 1  
 
You can open the model dictionary with the PACE navigator’s Net-Editor menu, menu 
option model dictionary, or you can click on the fourth icon from the right which ap-
pears on the icon list under the main bar in the PACE navigator. It also opens when 
you mark a text in an Inscription, and then select menu option dictionary in the In-
scription menu (ri.MK). In this case, PACE enters the text as an Entry in the Dictionary 
and marks the Entry. The user must then enter the descriptive text in the right part of 
the window (see Figure 5.3). The entry is saved to the Dictionary when the Entry 
marking is set back (by clicking the entry with le.MK). 
 
 

                                                           
1 Additonal options for documenting models in PACE were described at the end of 
Section 4.1. 



                
 
 
 
 

 - 53 - Getting Started with PACE 

                 

                                        Figure 5.3: Model dictionary with entries



  
  

Getting Started with PACE - 54 -          

6.  Optimization 
 
6.1 Optimization Procedures in PACE 
 
In optimizing models, we distinguish between net and parameter optimization. 
 
Net optimization compares the results generated from different nets with one another. 
From this we can deduce ideas for planning or for revising processes. In general, no 
automatic procedure can be set up for net optimizing, because for each model variant 
one needs to consider its actual feasibility in the real world, which can only be deter-
mined by a process engineer. We cannot know if an ’optimum’ solution we find really 
represents the optimum. Thus, we often designate ’net optimizing’ as ’net improve-
ment’. 
 
In contrast, for net parameter optimization we can prepare automatic procedures. 
These are also needed for the comparison of different alternatives in the net optimiz-
ing process described above. In parameter optimizing (we’ll use the short form, opti-
mizing, here), a net with predefined process ways is manually or automatically exe-
cuted with different parameters (e.g., number of resources) to find the parameter 
combination which is optimal with respect to the desired results (e.g., costs, runtime, 
etc.). 
 
For optimizing nets, PACE offers three possible procedures from which to choose: 
 
1. Repeated execution of the complete model  

Repeated execution of a model with changing parameters  
 
2. Automatic repetition of partial models  

Repetition of partial models with program-controlled parameter setting and listing of 
results and/or graphic representation of the results. The optimum can be read visu-
ally from graphic representations (also called graphic or visual optimization). 

 
3.  Mathematical model optimization  

Applying mathematical optimization procedures (for example, Hill Climbing, Sim-
plex, genetic procedures, threshold-acceptance) for automatically determining the 
optimum of a model. 

 
Which of these three procedures to use can only be decided by looking at the task 
assignments at hand. In general, you would look to mathematical optimization proce-
dures for multi-dimensional optimizations to keep the number of model executions as 
small as possible.  
 
In the following sections we will discuss all three net optimization procedures available 
in PACE using an example which has again been made as simple as possible so the 
description of the procedures, and not the example itself, takes centre stage. As an 
example, we’ll determine the maximum of the sine in the interval [0, π]. 
 



                
 
 
 
 

 - 55 - Getting Started with PACE 

6.2  Optimizing Mathematical Functions 
 
Before we discuss how to find the optimum of nets in the next sections, this section 
will cover the direct use of PACE’s optimization procedures in program code. In the 
present case, the optimum can also be determined without net modeling, e.g., with a 
Smalltalk program segment. Since it is sometimes a good idea to try out Smalltalk 
code in a so-called Workspace before using it in net inscriptions, we’ll cover those 
procedures in this section for practice. 
 
In the PACE navigator’s Work menu select the menu options transcript and work-
space one after another to open a Transcript- and a Workspace window (or ’Work-
space’ for short). You can set the window as shown in Figure 6.1. 
 

 
Enter the code shown in Figure 6.1 into the Workspace. In the first line, between the 
two vertical bars, the variables sineVal and maximum are declared. The second line 
contains the definition of a so-called Smalltalk-block: 
 
                    [:argument| argument first sin ]. 
 
It starts with an opening square bracket "[" and ends with a closing square bracket "]". 
The argument of the block is given after the colon (in other programming languages 
this is identified as a "formal parameter"). If there are more arguments, they are en-
tered in series, separated by a blank space and a colon. The end of the argument list 
is indicated by a vertical bar. 
 
Next is the block’s code, in this case just one line. Since the optimization procedures 
prepare the data in the form of an array, the argument is an array. Therefore, the first 

 

                            Figure 6.1: Mathematical optimization in PACE 



  
  

Getting Started with PACE - 56 -          

element of the argument must be calculated at the beginning of the block code. This is 
done with the expression argument first; one could also (less elegantly) have written 
(argument at: 1). The sine sin can then be applied to the element. The block is then 
assigned the local variable sineVal. 
 
The next three lines call up one of the mathematical optimization procedures foreseen 
in PACE, the so-called HillClimbingOptimizer. The sineVal block described above is 
given as the calculation specification for the optimization. Then in the fifth line, a be-
ginning value 0.2, with which the calculation of the optimum is to begin, is given in the 
form of an initialized Array #(0.2). If multiple arguments are to be given, they are listed 
in parentheses separated by blank spaces. Less elegantly, one could also have writ-
ten Array with: 0.2. 
 
The HillClimbingOptimizer calculates the maximum value of the sineVal block and 
assigns the associated argument to the variable maximum in the form of an array. In 
the last line of this piece of code, this value is written to the Transcript window. 
 
To execute this piece of code, first select it by sweeping over it with pressed le.MK. A 
more elegant way to select/deselect a piece of code is to click behind the last line of 
code in the window’s empty space. The marked code is highlighted in yellow. Then 
call up the window’s menu with ri.MK and select menu option do it. 
 
 
6.3 Repeated Execution of the Whole Model  
 
When executing a PACE model, the so-called initialization code is executed first. The 
procedure under discussion here is based on the fact that in the initialization code you 
can distinguish whether a simulation run is the first run of a model after manual initiali-
zation or a program-controlled repetition. This discrimination allows the initialization of 
program values in the first run, and their controlled change in subsequent runs. 
 
Whether this is the first run or a further execution of the model can found out with the 
message: 
     self isRestarted 
 
In the first execution right after initialization by the user, this query returns a value of 
false; in following executions it returns the value true. 
 
The execution of a model or simulation run is automatically ended when no transition 
can fire again. It can also be forced in a net inscription with the message: 
 

self terminate 
 
If, instead of the terminate message, you use the message: 
 

self restart 
 
a new execution of the model will begin. 
 



                
 
 
 
 

 - 57 - Getting Started with PACE 

We’ll start again with a new model, which we’ll call ‘Whole Model’. To show the re-
sults, open and scale a Message window and a MultipleCurve window. 
 
The Message window is opened with menu option message window in the View me-
nu of the PACE navigator. First an input window for the name of the Message window 
is opened, in which you’ll enter the name Maximumvalue. Then press the return key 
of the keyboard. The Message window is now opened and, as described earlier, can 
be positioned and sized as desired. 
 
The MultipleCurve window can be opened using the View menu, or with the icon but-
ton for multiple curves in the PACE navigator (eighth icon from the right). As described 
before, enter the window name Sine with the mi.MK after it opens, and call up the 
window menu with the ri.MK. There, select the menu option parameter. A parameter 
window will open in which you can, among other things, set the scaling of the window. 
Set the parameters as shown in Figure 6.2. After hitting return, the scaling of the win-
dow is updated. 

 
Next, enter the initialization code. Click on the corresponding icon on the PACE navi-
gator (fifth icon from the right) and enter the code as shown in Figure 6.3. 

   

           
         Figure 6.2: MultipleCurve-window and its  
                           Parameter-settings window 
 



  
  

Getting Started with PACE - 58 -          

 

 
The initialization code consists of a conditional message. Depending on whether the 
isRestarted message delivers true or false, the corresponding block in square brack-
ets is executed. In the true-branch of the message, the argument for the next run of 
the model is increased. The false-branch carries out the initialization of the global vari-
ables Argument, Maximum and SineCurve. With the first two lines of the false-
branch, the MultipleCurve window you’ve just created is attached to the model, and 
any possible content from previous simulations is erased. 
 
After you enter the program code, call up the text window menu with the ri.MK and 
select accept. Three query windows will appear sequentially to specify that each of 
the variables named above are global variables. 
 

 
The net of this example is quite simple and is shown in Figure 6.4. To start the net 
execution a so-called initial token, which is generated at initialization, must be inserted 
in the place. This is done as follows: 

 

                                   Figure 6.3:  Initialization code for Example 1 

 

Figure 6.4: Net of Example 1 



                
 
 
 
 

 - 59 - Getting Started with PACE 

 
Use the ri.MK to call up the menu of the place and select initial tokens. The window 
shown in Figure 6.5 is opened to define the initial token. 
 
Here you can set as many initial tokens with attributes and initial icons as desired. In 
the present case, only one token (without attributes) is needed. So, in the left part of 
the window (tokens), select menu option add in the ri.MK menu. This window will look 
like the one shown in Figure 6.5 and may be closed. 

 
The model is now complete and can be executed as described earlier. 
 
It is always useful to arrange the windows to be shown in a model in a working-
surface. If you save and leave the model (leave PACE in the File menu), it will open 
again when reloaded exactly as it was at that point. In the present case, one can, for 
example, compose the windows as shown in Figure 6.6.  
 

 

Figure 6.5: Window for agreement of initial tokens 



  
  

Getting Started with PACE - 60 -          

 
 
6.4  Using  PACE Net Functions  
 
Whenever there is a functional relationship between arithmetic values, a set of argu-
ments and a result, you can ask for the arguments for which the result is an extreme 
value. The optimization of nets is based on so-called PACE net functions. If parts of a 
model are represented as PACE net functions, these can be called up from other parts 
of the models and thus be supplied with input arguments. 
 
Figure 6.7 shows a workspace in which the maximum of the net function Sine is calcu-
lated and output to a Transcript window. Since most modeling steps have already 
been described in previous sections, we’ll go into detail only on steps which have not 
appeared before. 
 

 

                            Figure 6.6: Working-Surface for Example "Whole Model"  



                
 
 
 
 

 - 61 - Getting Started with PACE 

The net function in the simple example at hands consists of only one place and one 
transition (see the right subnet in the net window). It is called up when the partial net 
on the left side sets a token with parameters in the input place Sine. Since no fixed 
return place is specified, we still must provide the return-place ResultPlace, in which 
a token with the result, a function value, is to be placed. 
 

 

              Figure 6.7: Working-Surface of Example "Use of Net Functions"  
                  



  
  

Getting Started with PACE - 62 -          

A net function is called with the message: 
 

self addTokenTo: aPlace with: argument1 with: argument2. 
 
If the with:-entries are missing, a token without arguments is generated. Up to four 
with:-arguments may be entered. The first argument should always be the place into 
which the token is to be set. A place is attached with the message: self placeNamed:. 
As an argument, the name of the place must be entered in single quotation marks, 
that is, in the form of a Smalltalk-string. The return from the net function is also carried 
out with the addTokenTo: message. 
 
In the left subnet, two more new modeling steps should be explained: the installation 
of an initial token with the initial argument –0.0001, and the Transcript-message, 
which will write the result in the Transcript window. 

 
To install the initial token, we’ll mark the place StartPlace and select menu option ini-
tial tokens in its ri.MK menu. In the window which opens, install a token in the left 
partial window with the add function, as in the previous section. This token will carry 
one argument. Select the token identifier 1 in the tokens portion of the window, and 
call up the ri.MK menu in the attributes portion of the window. This includes only the 
menu option add, which you will select. Now enter the value –0.0001 in the code por-
tion of the window and use ri.MK, accept to accept it. The window will now look as in 
Figure 6.8. 
 
The Transcript message which writes the results in the Transcript window consists of 
the keyword Transcript followed by what is normally called a cascade. A cascade is a 
series of Smalltalk-messages separated by semicolons. They all relate to the same 
object, in this case to the Text-Output window given by Transcript. Instead of the Tran-
script message shown in the window, one could also have written the following two 
messages: 
 
       Transcript cr. 
       Transcript show: 'MaxArgument=', (MaxArgument roundTo: 0.001) printString,  
               '     Maximum=', Maximum printString. 

 

Figure 6.8: Agreement of starting tokens with values 



                
 
 
 
 

 - 63 - Getting Started with PACE 

 
The first of these two messages outputs a carriage return.  
 
A string-object is always expected after the show:-message in the second line. Using 
the comma operator, different strings can be lined up (concatenated). Numbers can be 
converted to strings with printString. Finally, the roundTo:-message rounds the 
number to its left (the so-called receiver) to a multiple of the number at right. MaxAr-
gument is calculated to four decimal places after the period, and is rounded to three 
decimal places after the period before output. The result of the Transcript message is 
shown in the Transcript window in Figure 6.7. 
 
 
6.5  Mathematical Optimization of Models  
 
The procedures in the previous sections have the disadvantage that in complex mod-
els, especially those where multiple arguments occur, a large number of model execu-
tions are required and the optimisation process can become very compute-intensive. It 
would be good, therefore, to reduce the number of model executions by using an opti-
mizer. 
 
In PACE the following optimizers with countless options for optimizing mathematical 
and net functions have been implemented, which in part can also be used in combina-
tion: 
 
    Hill-Climbing-Optimizer  
    GeneticOptimizer 
    ThresholdAcceptingOptimizer  
    Simplex-Optimizer. 
 
The first three of these can be scaled, i.e., can be implemented with reduced preci-
sion. Here we’ll describe the use of a HillClimbingOptimizer for the selected simple 
example. In Chapter 7 we’ll discuss the three scalable optimizers for optimizing a pro-
duction. 
 
We’ll start again with a new model, which we’ll call Mathematical Net Optimization. 
To implement an optimizer, PACE provides the library-module NetOptimizer, which 
may be placed in the empty net window (ri.MK, restore module). After insertion, mark 
the NetOptimizer module and select the refine menu option in its ri.MK menu. Press 
the yes button in the window which opens. 
 
This releases the NetOptimizer module, and its net appears in the net window. Nor-
mally, the net elements and inscriptions must be positioned in the net window anew to 
make a net overview easy. The result is shown in Figure 6.9. 
 
 



  
  

Getting Started with PACE - 64 -          

 
In this case, no scale factor is needed for optimizing. It is usually removed to reduce 
computer time when model parameters are only roughly known and/or the execution 
of the model requires a great deal of time. Thus, the line 
 
     scale: 0.1 
 
is either eliminated or commented out (by putting a quotation mark “ in front of the first 
character in the line and after the last character in the line). To do this, mark the action 
inscription with the le.MK and select menu option inspect in the inscriptions ri.MK 
menu. A text window will open in editmode to carry out the change. Then call up the 
ri.MK menu of the text window and select accept. 
 
The PACE net function to be called up is contained in the ReadValue module. Mark 
the module and select the menu option subnet in its ri.MK menu. The module’s net 
window shown in Figure 6.10 will open. The net must still be expanded by adding the 
nets for calculating the results. 
 
For the simple example we’re using here, it is only necessary to minimally expand the 
net (Figure 6.11). The required modeling steps have already been described earlier, 
but the two action inscriptions remain to be explained. 
 
 

 

                            Figure 6.9: Net window after executing refine   



                
 
 
 
 

 - 65 - Getting Started with PACE 

 
After the comments in Section 6.2 it is not necessary to explain the inscription for the 
calculation of the sine. With the net optimizers, too, the arguments are transfered in 
the form of a vector (vector is a subclass of array and can thus be processed by the 

 

              Figure 6.11: Completed net for the ReadValue module  

                                   

                 Figure 6.10: Original Net of the ReadValue module  



  
  

Getting Started with PACE - 66 -          

same messages). 
 
To return the result of a net function the following message is used: 
 

self netResult: returnVal. 
 
returnVal is returned to the optimizer, which continues to call the net function with 
changing arguments until the result achieves the desired precision. The result is then 
attached as an attribute to a token which is set to the return-place ResultLabel speci-
fied when the Optimizer was called up. 
 
Figure 6.12 again shows the final workspace with several simplifications in the 
Mathematical Net Optimization net window and a result token. 
 

 
 
 
 

 

            Figure 6.12: Working-Surface for mathematical model optimization  



                
 
 
 
 

 - 67 - Getting Started with PACE 

7.  Example: Optimizing a Production 
 
7.1 Conceptual Formulation 
 
A model is to be produced to calculate the number of skilled workers required for the 
production or processing of a given product. The following requirements must be con-
sidered: 
 
• Orders 

The orders for each product arrive exponentially distributed. The mean value of the 
distribution should lie within the (left open) interval (0, 10] of hours and is set by the 
user before the simulation. 

 
• Production characteristics  

Processing an order requires a fixed amount of time, which may be set prior to the 
simulation in the (left open) interval (0, 10] of hours. One order is performed by ex-
actly one skilled worker. 

 
• Runtime   

The time allotted for order processing is limited and is specified before a simulation 
in the (left open) interval (0, 10] hours. The specified execution time should be 
overstepped only by a very small percentage of the orders. 

 
7.2 Creating a model 
 
While in earlier sections we have described the (syntactical) construction of the mod-
els step-by-step, in the following we will present only an abbreviated representation, 
assuming that the user will model the demonstration graphics and texts. Only those 
individual steps which have not been presented in earlier sections, or expansions of 
earlier descriptions, are presented more explicitly. This does not, of course, include 
the internal (semantic) description of the model, which is presented using the graphic 
and text illustrations. 
 
Begin once again with a new model, which has the name ProductionOptimization. As 
described in Section 6.5., an optimizer is called up in the network window. This brings 
you to the graphic shown in Figure 6.9 with a new window name. 
 
The action codes must be changed in this network window, as shown in Figure 7.1. 
The optimum should be based on 30 skilled workers. Scaling is done in whole num-
bers, as each order is performed by exactly one worker. 
 
Output of the result is produced by the second action code. First, using Transcript with 
a cascade, the result is written to a transcript window. Then the result is output to a 
yet-to-be-defined AlternativeBarGauge, which is saved in the global variable Result. 
The AlternativeBarGauge window (its so-called View) is opened lower down. In trans-
lation of the action code (Menu option accept in the re-MT-Menu of the Actionscode), 
Result is declared as a global variable. 



  
  

Getting Started with PACE - 68 -          

Instead of a HillClimbingOptimizer, you may choose to use one of the other two scal-
able optimizers in PACE. In the case of a genetic optimizer, the action code could look 
as follows: 
 
  GeneticOptimizer findNetMinimum: 'MainEntry' 
           resultLabel: 'ResultLabel' 
           scale: 1 
           origin: (Vector with: 1) 
           range: (Vector with: 30) 
 
The minimum, i.e., the smallest number of skilled workers, with which the above con-
ditions can be met should fall between the boundaries 1 (origin) and 30 (range). 
 
For threshold acceptance, the code would look like this:  
 
 ThresholdAcceptionOptimizer findNetMinimum: 'MainEntry' 
                    resultLabel: 'ResultLabel' 
                    scale: 1 
                    initialVector: (Vector with: 10) 
                    initialThreshold: 3 
 
It is possible to integrate all three versions within the transition and to use them at will. 

         

                          Figure 7.1: Calling up the optimizer for production  



                
 
 
 
 

 - 69 - Getting Started with PACE 

In the transition's ri.MK-Menu, select the menu option code versions and select ac-
tion code in the sub-menu. This opens a window in which the versions of the action 
code can be managed. In the left side of the window, call up the ri.MK-Menu and se-
lect menu option add. This opens an input window for the version name under which 
the current code is to be saved (Figure 7.2). 
 
If you want to replace the current Transition action code with a saved code, highlight 
the name of the code in the left window and select menu option restore in the menu of 
the left window (ri.MK). 
 
The program uses the current date and time as a default name. In the case at hand, 
we are not considering management of the versions, but rather saving the three alter-
native optimizer calls. So the default name is replaced with the name HillClimbing.  

 
Similarly, one can save the other two optimization calls, resulting in the window shown 
in Figure 7.3. 
 
 

 

Figure 7.2: Inputting the version name 

 

Figure 7.3: Agreement of initial tokens and values 



  
  

Getting Started with PACE - 70 -          

To reduce the size of the window shown in Figure 7.1 on the desktop, both transition 
codes can be hidden with the Three-Dots-Menus.  

 
Next it’s time to create the work interface for the optimization model (Figure 7.4). 
To guide the simulation, a short horizontal executive bar is used. In addition to the Al-
ternativeBarGauge Result, three additional AlternativeBarGauges (Production time, 
Max. runtime and Mean) are used to set and manage the conditions to be considered 
in the production. 
 
The scales and other characteristics of an AlternativeBarGauge may be set in its Pa-
rameter window. In the ri.MK window select the menu option parameter. The parame-
ter window for Production time is shown in Figure 7.5. 
 
Use Text Styles to select the fonts for the scaling. 
 
The Range-specifications set the values of the scale. min and max set the minimum 
and maximum values in the scale. step sets the value increments for the scale. frac-

 

                    Figure 7.4: Work interface for production optimizing  
                  



                
 
 
 
 

 - 71 - Getting Started with PACE 

tion specifies the precision with which values are to be rep-
resented. Finally, using lines in step, you can specify how 
many lines should be added between "steps" to refine the 
scale representation. Checking rounded values allows you 
to specify that only multiples of the „step“ value may be set 
when adjusting a value. left scale allows you to control if 
the scale will be to the right or left of the bar. 
 
We recommend that you experiment with the Parameter 
windows for different graphics which can be shown via the 
View menu on the PACE main navigator. This will help you 
explore how the different settings work. 
 
As shown in Figure 7.4, you can add a one-line comment 
above the bar in AlternativeBarGauges. Call up the Bar-
Gauge menu again and select label. Enter the comment 
text into the input window which opens and save it with the 
Return key. 
 
If the parameter setting is needed later in another model, it 
can be saved and later loaded into another AlternativeBar-
Gauge. This is done with menu options store and restore 
in the menu of the Bar window. store writes the scale into a 
file in the ioutils subdirectory of the directory from which 
PACE was started. restore opens a selection window with 

the available scales. Most in/output windows in PACE use these functions to ease 
scaling of graphics.  
 
The AlternativeBarGauges shown in Figure 7.4 are attached to the model, as before, 
using the initialization code. Figure 7.6 shows the initialization code. 
 
In the first five lines, the four AlternativeBarGauges are assigned to four global vari-
ables, and the maximum allowable runtime is stored in the global variable Act-
MaxRuntime. The global variables are later used to access the BarGauges. The sixth 
line clears the Transcript window so output of the results (see Figure 7.4) is written 
into a blank window. 
 
The next two lines check if the production time is larger than the requested maximum 
runtime. If it is, an error message is returned and the simulation run is ended. 
 
The last two lines were added during modeling of the ReadValue module. Since the 
lines in the block (block code) are to be executed in various places in the model, the 
block is assigned to the global variable InitModules. The starting conditions for the 
yet-to-be-created modules OrderGeneration and Production can be recreated by 
calling up the block with the message InitModules value. 
 

 

Figure 7.5: Parameter 
window for an  Alterna-
tiveBarGauge                  



  
  

Getting Started with PACE - 72 -          

 
The  ReadValue module is shown in Figure 7.9. The PACE-Net function MainEntry is 
called up by the HillClimbingOptimizer with one argument, which is the only element of 
the vector paramVector. It is the number of workers with which the production, resp. 
the net procedure, is to be executed.  
 
To catch negative values which may occur in the HillClimbingOptimizer, these are im-
mediately steered to the right (Condition code: paramVector first <= 0). The optimizer 
is returned a very large value which is far above the expected minimum (see below).  
 
For positive values, the condition code paramVector first > 0 in the transition sets the 
starting conditions for the simulation. Next, the number of workers is output in the tran-
script window to document the optimization run. Then the simulation time is reset and 
the modules OrderGeneration and Production are initialized as described above. 
Finally, the capacity of the place ’worker’, which is positioned in the production mod-
ule, is set to the number of workers. 
 
Since orders arrive statistically distributed, i.e. they can heap up in between of some 
boundaries, it is not enough to consider only one order. Instead the set of orders in the 
place OrderQueue which develops during the production has to be investigated. For 
this reason, the OrderGeneration module generates a large number of orders whose 
arrival times are exponentially distributed. The mean value of the exponential distribu-
tion is set using the AlternativeBarGauge Mean. 
 
Figure 7.7 shows the OrderGeneration module. The exponential distribution is gen-
erated in the first transition from the top, setting the time interval between two orders. 
Then the connector variable orderCounter is initialized with the total number of orders 
which are to be performed. In the model, the net variable #NumberOfOrders in the 
OrderGeneration module is present with 10,000. In the global variable Production-
time_Met the program notes whether the preset maximum runtime was exceeded at 
any time during execution of the orders. If so, you can minimize simulation time by 

 

                      Figure 7.6: Initialization code for production optimization      



                
 
 
 
 

 - 73 - Getting Started with PACE 

halting the simulation run with the just-used number of workers and returning to the 
optimizer. 
 
The second transition of the module is connected to the place just above it with a dou-
ble connector. If the transition fires, then as long as the condition orderCounter > 0 is 
met, a token is removed from the above place and reset for the next order. The transi-
tion switches again after the delay time determined by the next value of the exponen-
tial distribution dist next. In addition, a token for the next order is sent to the order 
queue OrderQueue. In the course of this, the action code is executed. There the or-
der counter is lowered by 1, and the current time and number of currently-specified 
workers is stored in a so-called OrderedCollection prodData, which runs through the 
net as an attribute of a token representing the order. An OrderedCollection is a special 
array with dynamically changeable length. The current value of the connector variable 
orderCounter is the number of orders still to be generated. 

Figure 7.8 shows the Production module, in which a waiting queue is modeled as in 
the car wash described earlier. In contrast to the car wash, here several objects may 
be processed simultaneously. 
 
In connection with the Production module, the ReadValue module checks if the 
maximum production time has been exceeded. The difference CurrentTime - prod-
Data first delivers the runtime of the order. If it is larger than the maximum runtime 
allowed specified in the AlternativeBarGauge, then the number of workers has been 
set too low and the global variable Productiontime_Met is set to false. 

 

                                 Figure 7.7: The module OrderGeneration  



  
  

Getting Started with PACE - 74 -          

 
In the following step, a token runs to the right and is deleted if more orders remain to 
be done and the production time parameters have been met. If not, the token runs 
below. Here the generation of further tokens (orders) is first stopped when the Block 
InitModules is called up, and then the function value is calculated. 
 
The total time for the completion of the 10,000 assignments is CurrentTime. Multiply 
this time by the number of skilled workers specified in (prodData at: 2) to get a value 
proportional to the cost of the work. This may be used as the function value for cost 
optimization. If the production time cannot be met, a large replacement value 1.5e6 is 
returned as the function value. 
 
The last step in the simulation run is to complete the result specified in the beginning 
of the module. Depending on whether the production time specifications were met or 
not, the Transcript window will show the calculated function value or the string time 
overflow.  
 

 

                               Figure  7.8: The module Production  



                
 
 
 
 

 - 75 - Getting Started with PACE 

                    Figure 7.9: The ReadValue module for production optimization 



  
  

Getting Started with PACE - 76 -          

7.3 Experimenting with the Model 
 
Planning is often based on consideration of mean values. This is acceptable only if 
runtime and order queues are not limited. If, for example, you set both the production 
time and mean value of orders per hour to 1 and the maximum runtime to 10, the cur-
rent model requires only 2 skilled workers to carry out the order processing. This value 
is also produced when considering mean values. 
 
This changes dramatically when the maximum allowable runtime is limited. If the ma-
ximum allowable runtime is close to a value of 1, then 7 skilled workers are required to 
execute the order processing. The requirement for faster delivery of a product, i.e., 
faster processing of an order, would lead to considerably higher costs as expected. 
 
An overview of the situation is best achieved with charts or suitable graphics. To 
achieve an overview of the relationship between the number of skilled workers and the 
maximum runtime for order distributions with different mean values, the model in Sec-
tion 7.2 must be enlarged slightly to carry out the experiments. Here the options de-
scribed in Section 6.3, which allow the whole model to be executed repeatedly, can be 
used. 
 
Figure 7.14 shows the expanded modeling interface. It adds the so-called Button-
Board Options and a multiple-curve window to the previous interface (Figure 7.4). 
With Options you can specify, 
 
• Button: one value  

the appropriate number of skilled workers to be calculated for a combination of 
production time, maximum runtime and orders per hour.  

• Button. one curve  
a curve is to be calculated and drawn which represents the number of skilled wor-
kers for a fixed production time and a fixed mean number of orders per hour. The 
maximum production time traverses the values from the specified production time 
up to a value of 10 hours in one-hour increments. 

• Button: all curves  
the curve specified in the preceding point is to be drawn for all mean values of or-
ders in the range from 1 though 10. 

 
Figure 7.10 shows the expanded initialization code. The majority of the earlier code 
(see Figure 7.6) is included in the false-branch of the conditional message which be-
gins with self isRestarted. Added to that is a global variable ResultCurves which 
stores the multiple curve 'Number of skilled workers’. After this assignment, all possi-
bly existing curves in the curve window are deleted with clearAll. Then the Options 
ButtonBoard is assigned to a further global variable Options. The status of the but-
tons 'one curve' and 'one value' of the ButtonBoard  Options are stored in additional 
global variables OneCurve and OneValue. If the button is selected, the button deliv-
ers the value true; if not, the value is false. 
 



                
 
 
 
 

 - 77 - Getting Started with PACE 

Then the current runtime ActMaxRuntime is assigned. If the 'one value’ button is set, 
the value of the Max. Runtime bar is assigned. If not, a value is used which is mini-

mally larger than the value of the bar Productiontime. The production time is the lo-
wer limit for the runtime. 
 
In the remaining lines of the false-block, the mean value of the exponential distribution 
ActMean and the assigned curve color are set, which is implicitly defined by the curve 
number of the curve CurveNr. If only one value is to be calculated or one curve to 
draw, the Mean bar provides this mean value and the curve number is defined as the 
next largest integer (ActMean ceiling). Alternately, all curves are to be drawn, and both 
ActMean and CurveNr receive a starting value of 1. 
 
The last line of the block sets the specified curve for further outputs to ResultCurves. 
 

 

                                    Figure. 7.10: Expanded initialization code  



  
  

Getting Started with PACE - 78 -          

In the true-block, the next value for the abscissa in the next run of the model is calcu-
lated by increasing the current maximum runtime ActMaxRuntime by 1. After the 
conditional message, the Max.Runtime bar is set to a new value and the contents of 
the transcript window is deleted. 
 
In addition to changing the Initialization code, the action code of the transition must be 
altered, which is executed when a token which the optimizer has inserted in the place 
ResultLabel (Figure 7.11) is processed.  
 
The first three lines were already introduced in Section 7.2, Figure 7.1. 
 
In the conditional message which evaluates OneValue, the simulation run is ended if 
true; if not true, the next value to ResultCurves is output. 

 
If ActMaxRuntime >= 10, a curve is finished, otherwise, using the command restart, 
the next run of the model is started and the next value of the current curve is calcu-
lated. In the true-branch, the simulation is either ended (if Actmean = 10) or switched 
to the next curve (ActMean := ActMean +1). 
 
We still need to describe how the ButtonBoard Options in Figure 7.12 is created. 
From the Views-menu on the PACE’s main toolbar, select button board. A window 
with two input lines will open, with which you can define the form of the ButtonBoard. 
The preset values which appear when the window opens are precisely those which 
are needed here (3 buttons in one row). To create the ButtonBoard (Figure 7.12), 
press Return. 
 

 

                                       Figure 7.11: Expanded Transitions code  



                
 
 
 
 

 - 79 - Getting Started with PACE 

The window is given the name Options (mi.MK, relabel as…). To replace the default 
names label shown in Figure 7.12 with the names a value, a curve, all curves, (Fig-
ure 7.14), position the cursor on a button and call up the button’s menu (ri.MK). Select 
the menu point label and enter the appropriate name in the input window which opens, 
then press the Return key. 
 

 
So that only one button is pressed at a time, all other buttons must be released when 
one is pressed. To that end, each button is assigned a code which is executed when 
the button is pressed. For the left-hand button, for example, the procedure is as fol-
lows:  
 
Set the cursor on the button and call up the button menu again (ri.MK). This time, se-
lect menu option block. A block will open in which the delete code may be entered. 
After this input, the block will look as follows (Figure. 7.13): 

 
flag contains the current button status. If flag = true, then the button is pressed. In 
this case, the other two buttons are assigned the value false, i.e., the selection of the 
other buttons is reset.  
 
 

 

Figure 7.12: Newly created ButtonBoard  

 

Figure 7.13: Code to delete a Button 



  
  

Getting Started with PACE - 80 -          

 

                                     Figure 7.14: Expanded Model Overview  



                
 
 
 
 

 - 81 - Getting Started with PACE 

The control function of the button must be altered to avoid releasing the button 
through repeated pressing of an already-pressed button (thus leaving no button pres-
sed at all). For each button, call up the button menu and select parameters. That will 
call up the window shown in Figure 7.15. Change the control function by selecting 
trigger. 
 
 

 
 
When you have appropriately specified the other two buttons, the ButtonBoard is 
complete. 
 
Figure 7.14 shows all curves for an order runtime of one hour. One can see that the 
required number of skilled workers rises sharply for short response times (maximum 
processing times – run time) of less than an hour, and for response times of several 
hour converges only slowly toward the result calculated with the mean value of the 
exponential distribution. 

 

Figure 7.15: Default-Layout for a Button 



  
  

Getting Started with PACE - 82 -          

 

8. What’s left to do? 
 
As the example shows, modeling in PACE is a combination of net description and 
program code which controls processes in the net. Inscriptions and extra-codes usu-
ally require only a few Smalltalk constructs, such as assignment, conditional mes-
sages, etc., and several special messages such as show:, value, value:, restart, etc. 
 
While creating nets is usually learned easily, creating inscriptions in Smalltalk often 
causes problems, particularly if the user is not familiar with other programming lan-
guages already. For that reason, we’ve included a Smalltalk primer which describes 
the requisite language constructions and provides multiple examples. We strongly 
suggest you to review Chapters 3 through 5 of the Smalltalk Primer to make model 
creation easy and even fun. 


	Getting Startet with PACE
	Table of Contents
	1. Foreword
	1.1 General Introduction
	1.2 Why Do We Need Simulation Models?
	1.3 The PACE Methodology

	2. Basics
	2.1 Net Description of Discrete Processes
	2.2 Simple Nets
	2.3 Attributes of Nets

	3. Modeling a Car Wash
	3.1 The Basic Model
	3.2 Multiple Washing Programs
	3.3 Runtimes
	3.4 Iconizing

	4. Components (Modules)
	4.1 Creating a Component
	4.2 Using Components

	5. More Useful Features
	5.1 Defining and Changing the Standard Representation of Net Components
	5.2 Colored Nets
	5.3 Initialization code, break code, continuation code and termination code
	5.4 Special Bars for Simulation; Freezing Models
	5.5 Scenes
	5.6 Model Dictionary

	6. Optimization
	6.1 Optimization Procedures in PACE
	6.2 Optimizimg Mathematical Functions
	6.3 Repeated Execution of the Whole Model
	6.4 Using PACE Net Funtions
	6.5 Mathematical Optimization of Models

	7. Example: Optimizing a Production
	7.1 Conceptual Formulation
	7.2 Creating the model
	7.3 Experimenting with the Model

	8. What's left do do?

