

Cookbook

PACE 2008

Simulation Engineering GmbH
2008

© Copyright by IBE GmbH 1994-2008

 IBE Simulation Engineering GmbH
 Postfach 1142
 D-85623 Glonn
 Germany
 Tel.: +49-(0)8093-5000
 Fax: +49-(0)8093-902687
 E-mail: info@ibepace.com
 Home: www.ibepace.com

This reference manual is valid for PACE 2008.

PACE and the accompanied documentation is furnished under a
licence and may not be used, copied, disclosed and/or distributed
exept in accordance with the terms of said license. No part of this
manual may be copied, reproduced, translated or published in any
form without prior written permission from IBE.

This document is subject to change without notice. All features
described in this manual represent no obligations of the manufactu-
rer of this software.

All brand and product names are trademarks or registered trade-
marks of the respective companies.

II

Contents

6 - 76.2.1 Exponential .
6 - 76.2 Distributions .
6 - 66.1.2 Resetting Diagrams .
6 - 16.1.1 Bar-Diagrams and Line-Diagrams
6 - 16.1 Statistics .
6 - 16 Statistics and Distributions

. .
5 - 205.11 Packing and Unpacking of Objects
5 - 185.10 Queues .
5 - 165.9 Overflow .
5 - 135.8 Processing .

5 - 85.7 Rotating Table .
5 - 75.6 Firing of tokens at a special time
5 - 65.5 Timeout .
5 - 55.4 Loop .
5 - 25.3 Branching .
5 - 15.2 Random Number Generator
5 - 15.1 Counter .
5 - 15 Simple PACE-Constructs

. .
4 - 104.2 Extra Codes .

4 - 14.1 Working with Objects .
4 - 14 Use of Smalltalk in PACE

. .
3 - 13 Introduction into PACE

. .
2 - 12 Attributed PACE-Petri-Nets

. .
1 - 31.2 Bibliography .
1 - 11.1 The Software-Tool PACE .
1 - 11 Introduction .

III

A - 1

Appendix: List of the PACE
 Training Nets

. .
7 - 327.6 Connecting a DLL written in C to PACE
7 - 247.5 Improvement and Optimization
7 - 187.4 Netfunctions .
7 - 12

7.3.2 Use of language elements during the
 development of a net

7 - 10
7.3.1 Implementation of a simple
 language element

7 - 107.3 PACE Modules .
7 - 77.2 Switch .
7 - 17.1 Use of a Standard Module .
7 - 17 More complex PACE-Constructs .

. .
6 - 96.2.3 Uniform .
6 - 86.2.2 Normal .

IV

1 INTRODUCTION

While the PACE-manual is describing all features of PACE comple-
tely with only a few examples, the present "cookbook" introduces into
the basics of PACE in more application oriented manner. Basically
this cookbook contains the topics, that are treated during an intro-
duction, usually in PACE courses. It therefore contains a great
number of typical examples which can be used as templates during
modeling.

The handling of PACE is dealt with here only sporadically. One finds
information about that in the manual or in the online-manual. The
PACE starter that is added to every PACE delivery provides a good
entrance into the handling of PACE and into the feed in of inscripti-
ons into a PACE model.

For the preparation of inscriptions, for the direct carrying out of
Smalltalk code in a so-called Workspace and for the loading and
executing of the examples basic knowledge is necessary about
Smalltalk. This is provided by the Smalltalk Primer added to the
delivery by PACE which contains also numerous examples and
practices.

1.1 The Software-Tool PACE

PACE is a SoftwareTool for the modeling and simulation of event
oriented systems. It employs attributed hierarchical stochastic Petri
nets with time and Fuzzy modeling and is therefore particularly well
suited for the description of real systems with parallel activities.

The theory, underlying Petri nets, was developed by C. A. Petri in the
year 1962, within the framework of his dissertation "Communication
with Automats" at the TH Darmstadt in Germany. The target of the
work consisted in creating a tool which can be used for the

IBE / PACE Introduction

1 - 1

description and the simulation of parallel processes. The tool propo-
sed by Petri achieved, particularly due to the graphical approach,
within short time wide scientific interest, but could not achieve
because of his initial unwieldiness spread use in the industrial area.

With the appearance of powerful and cheap computers on the
market at the end of the eighties computer supported Petri net
simulators which virtually are usable at every workplace became
possible. One of the best known Petri net simulators with very many
advanced features is PACE who has found a broad acceptance
within the last years. The spectrum of the applications reaches from
the processing of abstract mathematical models over the simulation
of concrete systems as manufacturing plants or business processes
to the programming of complex operations as for example they can
be found in the publications of Konrad Zuse.

The basis of the modern Petri net theory was developed 1970 by J.
L. Peterson. Since then Petri nets with today's common symbols for
places and transitions are in use.

In order to cover more and more new fields with Petri nets, the initial
concept was expanded by many people and adapted to the respec-
tive needs. Also PACE implements a modern form of attributed Petri
nets with numerous enlargements. Some of the essential enlarge-
ments are:

· Possibility to build hierarchical nets.
· Net attributation und data processing with the object-ori-

ented programming language Smalltalk.
· Use of individual and problem--related icons instead of

the standard icons of the net elements.
· Restriction of the capacity of places.
· Time modelling.
· Modelling of random behaviour with mathematical and

empirical probability distributions.
· Inhibitors
· Global variables and net variables.
· Fuzzy-Logic

IBE / PACE Introduction

1 - 2

· Call of external procedures (e.g. drivers, I/O-Handler)
and von programming systems during the simulation
resp. the execution of a net.

· Net functions.
· Procedures to optimize net functions.
· etc.

The many extensions of Petri nets and of the Smalltalk library are
incorporated in IBE's modelling and simulation language MSL, which
is described completely in the PACE user manual.

1.2 Bibliography

Bibliographical references to Petri nets, Fuzzy technics and
Smalltalk are found at the end of the PACE User Manual. Referen-
ces for Smalltalk are also found at the end of the Smalltalk Primer.

IBE / PACE Introduction

1 - 3

2 ATTRIBUTED PACE-PETRI-NETS
Petri nets in their initial form are built up from four element types.
The static elements are the places, transitions and connectors which
determine the topology of the net. The dynamic elements are the
tokens that can move in the net according to certain rules. In the
attributed Petri nets of PACE there are also modules and channels
for the hierarchical construction of nets.

Places are passive elements, transitions active elements of a Petri
net. A token always "wanders" from one place to the next place
passing a transition. Transitions always vary in the net with places.

Connectors connect places with transitions and transitions with
places. The place in front of the transition is designated also as an

IBE / PACE PACE Petri Nets

2 - 1

entry or input place, that after the transition as an outgoing or output
place.

The current state of a net is defined by the tokens on the places.
State changes of the net are defined by the "movement" of the
tokens from place to place. The token alternation in the net is
induced by so-called "firing" of transitions. A transition in this case
takes over tokens from its input-places and stores new tokens in its
output-places.

For the hierarchical structuring of nets PACE offers two further net
elements, namely modules and channels.

Modules are also active elements and are employed for the reusable
organization of partial networks. During their construction all network
elements may be used. On the other hand channels are passive
network elements which consist only of places and further channels.

While the meaning of modules during the development of nets is
obvious, the meaning of channels which are useful during the
development of complex nets is not as easy to understand. By
means of a simple analogy the channel concept can be clarified,
however:

Places can be compared with single cable-connections
beween hardware modules. Channels can be compared with
tupes in which bundles of cable-connections are put together
to connect modules.

The active elements of a Petri net are called T-elements whereas the
passive elements are called S-elements.

To simplify the understanding of specialized literatur and the present
text the usual keywords in use with Petri nets are listed in the follo-
wing table:

IBE / PACE PACE Petri Nets

2 - 2

Combination of passive
net elements

channelKanal

Module, partial net moduleModul

Information, MaterialtokenMarke, Kern

Connection Situation,
crossing (point)

connector
, arc

Konnektor,
Kante, Bogen

Transition,
Process (-step)

transiton,
event

Transition,
Ereignis

Situation, storage, Bufferplace,
condition

Stelle, Platz,
Bedingung

EnglischGerman

System, ProcessProcess Model

IBE / PACE PACE Petri Nets

2 - 3

3 INTRODUCTION INTO PACE

The state of a Petri net is determined by the token contents of its
places. Modifications of the network status are induced by the firing
(switching) of transitions.

Under 'firing' one understands the consumption of the entry tokens
and/or the generation of output tokens. The firing od a transition
consists of 2 steps, namely the activation of the transition and the
following token-alternation.

A transition can fire if

at least one token is available in every input place.

the capacity of every output place is not exceeded.

IBE / PACE Introduction into PACE

3 - 1

Considering these rules the following statements hold for the illustra-
tions net002a and net002b: The transition in net002a can fire exactly
once. In this case the net represented in net002b is produced. As
described above the entry tokens are consumed and a new token is
generated.

Example: In a production two parts are put together and represent a
 new third part.

The transition in figure net003 cannot fire because the capacity of
the output place shown in square brackets would be exceeded.

IBE / PACE Introduction into PACE

3 - 2

The conditions for the firing of transitions (input conditions) are
expanded by adding of connector attributes to the entry connectors.

Tokens and connectors can be provided for this purpose with

IBE / PACE Introduction into PACE

3 - 3

attributes which are to be seen during the network view as legends
of the corresponding network elements. The transition can only fire if
a token that contains the same constant factor as the connector is on
the place. The entry tokens are consumed and output tokens are
generated in accordance with the attributes of the output connectors
(that are connector variables or connector constants).

If now instead of a constant a variable name is the attribute of a an
input connector, the value of the token attribute is assigned to the
variable during the activation of the transition. These variabels are
known in the "vicinity" of a transition (that is up to the bordering
places) and are called "transition local" variables.

IBE / PACE Introduction into PACE

3 - 4

Connector attributes at the output connectors are employed for the
generation of output tokens (these are made always while firing).
During the generation of the output tokens at the output connectors
with variable attributes, the value of the transition-local variables are
taken over. In case of variables the values of the transition-local
variabels are assigned to the token attributes; for constant connector
attributes tokens with constant attributes are produced.

In general to tokens and connectors as many attributes as desired
can be assigned. About a connector with connector attribute n only
flags with flag attribute n can flow. The variable assignment is
independent of the tokens on the place. The token attributes are
assigned in turn to the variables as these are defined with the attri-
butation of the connectors.

Investigate the behaviour of the following net:

IBE / PACE Introduction into PACE

3 - 5

A transition with input connectors with the same variable names can
only fire if the values which are assigned to the variables are
equal(matching).

A connector variable is known only in the environment of the transi-
tion to which the connector is coupled. Connector variables are local
variables. One can recognize them by their beginning letter which is
a small alphabetic character unlike the global variables which are
known to net as a whole and must begin with a capital letter
(Smalltalk-conventions).

The attributes of tokens on places are independent of the assign-
ment to the variables of connectors.

IBE / PACE Introduction into PACE

3 - 6

What happens in the following net?

IBE / PACE Introduction into PACE

3 - 7

Summary:

Conditions for firing (activation):

1. At least one token must be on all input places.

2. The number of attributes of the connector and the token must be
equal.

3. The contents of the token attributes must be the same if several
input connector attributes are the same.

4. If a connector attribute is a constant the corresponding token
atttribute must be equal.

5. The maximum capacity of the output places may no be reached

6. If an attribute of an input connector is a variable, then the value
of the corresponding token attribute is assigned to it.

The transition fires:

1. The input tokens are destroyed.

2. The output tokens are generated in accordance with the
markings of the output connectors; to token variables are assig-
ned the values of the transition local variables. In case of
constant connector attributes the constants are assiged to the
token attributes.

IBE / PACE Introduction into PACE

3 - 8

4 USE OF SMALLTALK IN PACE

4.1 Working with Objects

The processing of objects occurs in the transitions of a net. The
code, necessary for that, is formulated with the object-oriented
programming language Smalltalk-80. In every transition during firing
Smalltalk-code for the processing of objects is executed.

In every transition three types of code can be established:

a) Condition Code: This code must deliver one of the boolean
values true oder false and is executed at
first during the activation of a transition.
Default is true. If false is returned the
transition is not activated and cannot fire.

b) Delay Code: This code must deliver a positive number
which defines the delay betrween the
activation and the firing of the transition.
The firing is delayed by so many simulator
time units as this number indicates.

c) Action Code: This code is executed when firing a transi-
tion and contains the actuall instructions for
the object processing.

The following example shows Condition Code by which branching is
realized. The Smalltalk expression m > 5 resp. m <= 5 respond
dependent of the actual values of the variables either true or false.

IBE / PACE Use of Smalltalk in PACE

4 - 1

How does the net progess in case of n > 5?

IBE / PACE Use of Smalltalk in PACE

4 - 2

During programming unwanted side-effects can appear. The follo-
wing net shows an example:

In case of transitions that manipulate objects of the classes Array,
Association, Dictionary, OrderedCollection and Set Smalltalk does
after an assigment to a variable not work with a copy of these
objects, but directly with the original instance. Therefore sometimes
unwanted effects arise, that can be avoided through suitable
programming (normally copying of the object).

IBE / PACE Use of Smalltalk in PACE

4 - 3

By the Delay code the firing of the transition is delayed by the assig-
ned time units. Examine this with the following net. You can find 'time
window' under the menu point 'view' in the Pace main board (The
Visual Petri-Net Developer):

If several transitions can fire at the same time the order of firing is
not defined resp. accidential. By this unwanted effects can occur. For
instance the parallel incoming workpieces in a material flow system
are sorted timeless. A "waiting" at the sorting place has to be forced
(e.g. with very small delays).

IBE / PACE Use of Smalltalk in PACE

4 - 4

Investigate the following net:

A token in the left net runs five rounds until the first transition in the
right net fires.

What happens in the left and in the right net of the following figure?

IBE / PACE Use of Smalltalk in PACE

4 - 5

In the left case all 3 tokens are planed be the scheduler together,
that means for execution at the same time; they are processed in
parallel. In the right case the three events are scheduled and execu-
ted one after the other. This is the reason why in the left case 3 time
units are necessary until all three tokens have been processed. In
the right case 6 time unit are necessary to process the tokens. To
this difference in working modes one has to pay attention when
modelling the working of workpieces with machines which are repre-
sented by transitions.

An inhibitor is the negation of a connector through which never a
token can flow. He is used like a normal input connector with the
following difference:

· If a token fullfils the condition the transition cannot fire.
· If no token fullfils the condition the transition can fire.

The transition in the following net can fire until the token with the
number 2 has been transfered to the right place.

IBE / PACE Use of Smalltalk in PACE

4 - 6

The next example shows how the state in the right place can be
changed without consuming an input token.

IBE / PACE Use of Smalltalk in PACE

4 - 7

IBE / PACE Use of Smalltalk in PACE

4 - 8

Summary:

Conditions for firing (activation):

1. All input places store at least one token.
2. The number of attributes of the connector and the tokens have to

be equal.
3. All places which are connected with the inverted input of a transi-

tion must not have tokens with the same connecotr legends.
4. If several connectors have the same connector legends the

contents of the tokens must be equal.
5. If the connector attribute is a constant the token attribute must

be the same constant.
6. The maximal capacity of the output places must not be

exceeded.
7. The condition code true is requested.
8. If the input connector attribute is a variable the value of the

corresponding token attribute is assigned to the ltransition ocal
variable.

The transition is activated:

9. After activation the firing is delayed be the time units which result
from the execution of the delay code.

The transition fires:

10. The action code is executed.
11. The input tokens are destroyed.
12. The output tokens are generated according to the attributes of

the output connectors. Variables are assigned the value of the
transition local variable, in case of constants the constants are
used.

IBE / PACE Use of Smalltalk in PACE

4 - 9

4.2 Extra Codes
Extra Codes are necessary for the organizational embedding of
PACE nets. Each model can have four extra codes which can be
defined in the Net-Editor-Menu of the Visual Petri-Net Developer,
menu function: extra codes. They are used for the following tasks:

· Initialization Code

It serves as the name says for the initialization of the net before
its execution. This includes the initialization of global variables
and data fields, the opening of files etc.

· Break Code

It is executed when a simulation run is interrupted by the user or
with a break message. In the break code there could be e.g.
intermediate evaluations and reports which inform the user about
the progress of the simulation.

· Continuation Code

If a simulation run is interrupted the user can change parameter
adjustments according to the actual situation of the simulation to
influence the further execution of the simulation model. With the
continuation code these adjustments can be read in and are
available for the further execution of the model.

· Termination Code

The termination code is used for finishing tasks like evaluation,
output and if necessary graphical representation of the simula-
tion results, the closing of files, etc.

Initialization code and termination code is actually used in each
larger model; see the examples in the directory 'samples'.

Break code and especially continuation code is necessary for inter-
active simulation models in which the user has to influence the

IBE / PACE Use of Smalltalk in PACE

4 - 10

execution of the model. Examples of interactive simulation models
are:

Training Models

With interactive simulation models schedulers (freight traffic,
running control etc.) can economically be prepared for their later
work.

· Evaluation Models

It often isn't clear from the start of complex system models how
the model behaves under different initial parameters.

Although it is possible to determine with the optimization possibi-
lities provided by PACE parameter sets which lead to a good or
even optimal flowing of the model. If however the number of
parameters and the variation area is too extensive, the calculati-
ons frequently cannot be carried out in sensible time.

With evaluation models the value ranges of parameters and if
necessary also the algorithms to change them can be changed
by trying out by the user during the models execution. By that
the following optimization runs then can be carried out in
adequate time.

IBE / PACE Use of Smalltalk in PACE

4 - 11

5 SIMPLE PACE-CONSTRUCTS

5.1 Counter

The following figure shows a counter. If a transition fires the contents
of the input token is incremented resp. decremented by 1 and then
inserted in the output token.

5.2 Random Number Generator

A random number generator is made, if a flag is attributed with a
distribution (for example Exponential, Normal, Weibull). The
message 'next' is sent to this distribution by the connected transition.
By this one receives the next random value from the distribution

IBE / PACE Simple PACE-Constructs

5 - 1

which for example can be assigned to a variable z for the further use
or can be used directly in the delay-code of a transition.

5.3 Branching

There are essentially two methods to model branching. The first
method consists in labelling the connectors with constants in order to
let flow through only specific objects. This possibility only works
however for simple objects like Boolean, integers, strings, symbols.

IBE / PACE Simple PACE-Constructs

5 - 2

IBE / PACE Simple PACE-Constructs

5 - 3

The second possibility uses Condition Codes:

Branching which starts from a place is a fundamental conflict in Petri
nets. This is the reason why one should allways force the direction
when modelling branching, if possible. If nothing is specified the
strategy implemented in PACE, that is either deterministic or
accidental, is used. The respectively desired strategy can be
changed with the following message in a Workspace:

 UserPreferences randomScheduling: aBoolean

where aBoolean is either true (accidential) or false (deterministic).

IBE / PACE Simple PACE-Constructs

5 - 4

5.4 Loop

The following net shows a loop. The token with the constant array
flows into the loop. Each number in the array is then incremented by
1.

If all numbers have been incremented the token leaves the loop.
This is done with a branch where one of the methods described in
section 5.3 is used.

IBE / PACE Simple PACE-Constructs

5 - 5

5.5 Timeout

The following example shows how a timeout is modelled in PACE. If
the transition 'Interrupting Timeout' does not fire inbetween 30 time

units the transition with the delay fires.

IBE / PACE Simple PACE-Constructs

5 - 6

5.6 Firing of tokens at a special time

In the following example all tokens which have been collected until 3
p.m. are fired at 3 p.m. The transition with the delay 9 adds the 9
missing hours until midnight to simulate a 24 hours cycle.

IBE / PACE Simple PACE-Constructs

5 - 7

5.7 Rotating Table

Let's examine the simple transport problem shown in the following
figure. It consists of two operating robots and a turntable with three
positions. If the container in Position1 is empty, then Robot1 can put
a part in it. If the container in Position3 is full, Robot2 can remove the
part from it. The turntable requires a time unit for turning the contai-
ners from one position to the next. The numbering of the containers
(represented by tokens where the first attribute is the number of the
container and the second attribute is its filling level) are not relevant
during the simulation. They only have to show that the containers are
allways stored in the same order on the rotating table. The following
net modified insignificantly can als be used for the simulation of a
conveyor belt.

IBE / PACE Simple PACE-Constructs

5 - 8

To conserve space, we won't discuss the source of the parts to be
moved (module "PartsSource") and their further processing (module
"PartsTreatment") here. We'll simply assume that the parts will arrive
and will be processed statistically.

The two next figures show the two modules, "PartsSource " and
"PartsTreatment." Here we clearly assume a random distribution of
the points in time when a part is delivered or used. Delivery of parts
is as follows (module "PartsSource"): the token located at a given
place is delayed by the random value of the time delay. Then the
transition fires, and delivers a token to each of the places connected
to it. One is used to plan the next part delivery. The token which runs
to the place "PartsArrival" represents the part delivered from outside
the system.

IBE / PACE Simple PACE-Constructs

5 - 9

The following two figures model the work of the processing robots.
Here again we're looking only at the delivery of parts. In the contai-
ner at "Position1" there is a token whose attributes indicate which of
the three containers on the turntable is in position, and that this
container is empty. The transition "HandlingRobot1" can fire only if,
along with this token, there is also a token (a part) in the place
"PartsArrival." If the transition fires, it collects both tokens and places
a token with the attribute value "full" (a part) in the container at
"Position1."

IBE / PACE Simple PACE-Constructs

5 - 10

The model of the turntable shown in the next figure is only a little
more complicated. Here we see, a bit more subtly, the input/output
interfaces "Position1" and "Position3" from the next-higher level with
its initial values and the container "Position2" which is not accessible
to either handling robot. The partial net shown here rotates the
current attributes regarding the three stated positions.

IBE / PACE Simple PACE-Constructs

5 - 11

Since the turntable switches the positions according to a time unit,
the transition "tr4" fires once in each time unit and places a token in
each of the places, pl1 to pl4. The token inserted in pl1 plans firing
up to the next time unit. Until that point, transitions tr1 through tr3
fire, since there is a token in each of the input places of all these
transitions, and they transport the tokens lying in the three positions
on to the next position in each case.

IBE / PACE Simple PACE-Constructs

5 - 12

5.8 Processing

If a token has to stay in a certain module during the execution this
can be realized as follows:

The token stays as long in the module till the working time is over.

IBE / PACE Simple PACE-Constructs

5 - 13

By the number of the tokens with which the place 'Waiting for work'
is initialized the maximal number of the simultaneous working
processes in the module can be set (for example maximal number of
batch processes).

If the Modul is supposed to carry out only one task at a time, also the
following 'WorkingModul' with an inhibitor can be used:

IBE / PACE Simple PACE-Constructs

5 - 14

IBE / PACE Simple PACE-Constructs

5 - 15

5.9 Overflow

Usually tokens would accumulate before a module if it can not
include any more tokens. In following example the tokens which
would accumulate in case of a busy module are drawed off into the
place designated with 'overflow'. If one would leave out the overflow
place, so the "superfluous" tokens would be destroyed.

IBE / PACE Simple PACE-Constructs

5 - 16

IBE / PACE Simple PACE-Constructs

5 - 17

5.10 Queues

A typical queue problem could read approximately as follows:

"In a production enterprise the material edition is serviced by only
one employee which is according to his opinion overloaded. The
other employees complain about too high delays. Judge the
situation!"

Dates:
12 employee/hour arrive in the average
The middle serving-time is 3.33 minute/employee.
Arrival-times and serving-times are distributed exponential

Pure solution :
middle utilization 66 %.
Middle Number employee in the queue can be determined in
theory

Task: Make a histogram for the following queue-example for the
distribution of the delays onto different waiting room reservati-
ons. (see also PACE manual, section 10.3.2).

IBE / PACE Simple PACE-Constructs

5 - 18

IBE / PACE Simple PACE-Constructs

5 - 19

5.11 Packing and Unpacking of Objects

During modelling the case occurs frequently that objects (tokens)
have to be gathered and to be distributed later again. For example
one can think on products which are brought to their workmanship
place in baskets or parcels.

Such cases can be modelled simply when the attributes of the
tokens are buffered as the elements of an OrderedCollection repre-
senting the entire container content, and the tokens are destroyed
after that (packing). The OrderedCollection then flows as the attri-
bute of a token representing the whole container through the net to
the point at which the packed tokens have to be processed. There
one can, if this is requested, generate the tokens again and attribute
tem correspondingly with the elements of the OrderedCollection
(unpacking).

We consider here only the simplest case in which the tokens have
no attributes and in which the number of packed objects alone is
sufficient to describe the container.

Since we want to formulate the packing and unpacking in each case
as modules, we first have to introduce two module variables1, a

IBE / PACE Simple PACE-Constructs

5 - 20

1 For simplicity we assume that all container store the same
maximum number of objects.

module variable that indicates how many objects in the container can
be stored and a module variable that indicates the current filling level
of the actual container.

The window shown in the preceeding figure for the definition and
initialization of module variables can be opended in the 'net editor'-
menu of the Visual Petri-Net Developer, menu item 'local variables'.
The module variable #NumberOfObjects defines the maximum

IBE / PACE Simple PACE-Constructs

5 - 21

number of objects in a container, the module variable #Count indica-
tes the actual filling level. #Count is initialized with 0. #NumberOfOb-
jects can be set by the user.

In the following net the packaging of objects is shown. We eliminate
all tokens except for the last one and attribute this one with 'count'.
The value of 'count' agrees when leaving the module with the
predefined maximum number in a container # NumberOfObjects.

IBE / PACE Simple PACE-Constructs

5 - 22

The next net shows the unpacking of objects, that is the generation
of the tokens representing the original objects at another point of the
net.

Exercise: Extend the modules 'Packing' and 'Unpacking' for contai-
ner, which store a different maximum number of objects and for attri-
buted tokens.

IBE / PACE Simple PACE-Constructs

5 - 23

6 STATISTICS AND DISTRIBUTIONS

6.1 Statistics

6.1.1 Bar-Diagrams and Line-Diagrams

PACE offers the possibility to represent data items which results
during the simulation in time-controlled bar or line diagrams. You find
the handling of these statistical windows in the PACE user manual,
section 8.8: 'Time Dependent Diagrams'.

In all diagrams standard functions are defaulted in the in each case
assigned block (cf. PACE user manual). It is however possible to
change the default diagram-function in order to display the behavior
of own objects. In this case one has to be aware that the functions
always return a Smalltalk point x@y.

In the following example a histogram was assigned to a place:

IBE / PACE Statistics and Distributions

6 - 1

IBE / PACE Statistics and Distributions

6 - 2

Line Diagram for a Place:

Load the image net018.im from the directory 'tutorial' in the PACE
installation directory:

The line diagram shows for each time point (x axis) the number of
tokens (y axis) which lie on the place with legend: 'line diagram on
this place', which results in a sinus curve.

IBE / PACE Statistics and Distributions

6 - 3

IBE / PACE Statistics and Distributions

6 - 4

Histogram for a Collector:

You can load this net net019 from the net directory of the tutorial
directory in the PACE installation directory. The histogram is connec-
ted to the connector with attribute '(n)':

IBE / PACE Statistics and Distributions

6 - 5

6.1.2 Resetting Diagrams

For special applications which evaluate an optimum in several
simulation runs the opened diagrams must be cleared before the
next run in part or in total. For this purpose there are the following
methods:

The function resetPlaceStatistics: which takes as an argument the
name of a place which is connected to the transition that contains
the function call, resets the graphics of all statistics windows of the
indicated place.

Example: self resetPlaceStatistics: 'place1'.

With the function resetAllStatistics all opened statistics windows of a
net can be reset.

Example: self resetAllStatistics.

IBE / PACE Statistics and Distributions

6 - 6

6.2 Distributions

In PACE the most important continuous mathematical distributions
are available. The distributions can be displayed for user defined
parameters with the menu items 'probability densities' and 'probabi-
lity distributions' in the evaluator menu of the PACE main board
(Visual Petri-Net Developer). The distributions are completely descri-
bed in chapters 10 of the PACE user manual. There also an example
is shown how one can make empirical distributions and use them in
simulation models. Here we show examples with three important
standard distributions, namely the exponential distribution, the
normal distribution and the uniform distribution.

6.2.1 Exponential

Description: The class Exponential is an implementation of the
exponential function.

Methods:

 mean: x generates a new exponential distribution with
mean value x.

 next delivers the next value of the distribution.

 = is the argument an exponential distribution with
the same mean value then true is returned, other-
wise false.

 == are receiver and argument the same instance of
an exponential distribution then true is returned,
otherwise false.

IBE / PACE Statistics and Distributions

6 - 7

6.2.2 Normal

Description: The class Normal implements a normal or
Gaussian distribution.

Methods:

 mean: x deviation: y
Generates a normal distribution with mean value
x and standartd deviation y.

 next returns the next value of the distribution.

Attention: With a normal distribution also negative values can
appear. For only positive values of the are meaning-
ful one has to pay attention that the values of a
nomal distribution are not directly assigned to a
delay.

IBE / PACE Statistics and Distributions

6 - 8

6.2.3 Uniform

Description: The class Uniform implements the distribution
where the probability for all arguments is the
same.

Methods:

 from: x to: y Generates a uniform distribution with the lower
limit x and the upper limit y.

 next returns the next value of the distribution.

 printOn: x Writes an ASCII representation of the receiver in
the stream x.

 = If the argument also represents a uniform distri-
bution for the same intervall, then true is returned,
otherwise false.

IBE / PACE Statistics and Distributions

6 - 9

 == If the receiver and the argument represent the
same instance of the distribution true is returned,
otherwise false.

IBE / PACE Statistics and Distributions

6 - 10

7 MORE COMPLEX PACE-
 CONSTRUCTS

7.1 Use of a Standard Module

The present example shows the use of a standard module. Modules
are stored in the subdirectory ‘modules’ of the PACE directory. The

IBE / PACE More Complex PACE-Constructs

7 - 1

example models a production with two kinds of objects which arrive
exponentially distributed with a mean value of 20 and 30 minutes.
For the processing of the objects a mean time of 13 minutes is requi-
red. The processing of the more seldom arriving objects shall be
preferred.

At first the generation of the two product streams and its processing
is modelled. A new model is opened for this and the entries shown in
the foregoing illustration are carried out in the edit window.

The next step is to insert and connect the module ‘priority.sub’ of the
module library (this is the directory ‘modules’ in the PACE directory).

IBE / PACE More Complex PACE-Constructs

7 - 2

The attributes of the connectors (prio n) have also been inserted. As
identification of an object the object number n the used, which as
shown in the next illustration is assigned after an object arrived. The
priority of the object type arriving more frequently is lower than the
priority of the object which arrives more seldom. This means that the
priority number of the object type arriving more frequently is higher
than the priority number of the other object type.

To start the processing of an object an initial token must be inserted
in the place 'Next token'. To start the processing of the next object
the lower transition must be connected with the place 'Next token'.

IBE / PACE More Complex PACE-Constructs

7 - 3

By this one gets the following net which is represented in edit and in
simulation mode (immediately of initialization).

IBE / PACE More Complex PACE-Constructs

7 - 4

If one finally connects a consumer to the lower transition who
documents the order of the tokens in a Transcript window (done in
the three point code), then the net and a Transcript window looks as
follows:

IBE / PACE More Complex PACE-Constructs

7 - 5

One recognizes the change in the processing order of objects in
accordance with the object priorities(e.g. object 3 is processed
before object 2).

IBE / PACE More Complex PACE-Constructs

7 - 6

7.2 Switch

When modelling working processes very often the case occurs that
the working process has to be switched off and on by the operator,
from case to case. In the following figure 'Switch' a module represen-
ting the switch is contained.

The actual switch is contained in the module 'switch.switch'. The
variable 'SwitchAdjustment' used therein has to be initialized when
initializing the module (Initializationcode) according to:

IBE / PACE More Complex PACE-Constructs

7 - 7

SwitchAdjustment := #ein

SwitchAdjustment is a module variable but could also be delared as
a global variable.

IBE / PACE More Complex PACE-Constructs

7 - 8

If during the execution of the model the shift key is pressed a query
window opens and asks if the actual position of the switch has to be
changed.

The delay code 2 for the right transition in the module Switch is
necessary to guaranty that all tokens have left the Switch and there-
fore for the next generated token the new switch position is already
effective.

The proposed method is only usefull if the switch is often passed by
tokens. If this is not the case and if one wants not to press the shift
key until the next token passes the switch one should implement the
query as a separat partial net with enough token traffic.

IBE / PACE More Complex PACE-Constructs

7 - 9

7.3 PACE Modules

In PACE hierarchical Petri nets can be built up in a modular way.
The network components constructed with the PACE module
technique can be employed after their preparation in the entire net or
in other nets. With this procedure amongst other things also
Workflow description languages can be implemented in a simple
manner.

The procedure to be adopted when implementing language elements
of such languages is demonstrated in the following with at a simple
example.

7.3.1 Implementation of a simple language element

To make the procedure transparent, a very simple language element
will be implemented in the following. We choose a simple counter
'Counter', which merely increments numbers. Starting point is the
following simple Petri net:

IBE / PACE More Complex PACE-Constructs

7 - 10

It consists of three simple net elements: the places 'input' and
'output', which contain the tokens before the entry and after the exit
of the module 'Counter'.

The module 'Counter' is very simpleand shown in the following
figure:

It shows the places 'input' and 'output' (drawn more weakly) as the
interface to the environment and consists only of one transition
which increments incomming numbers by 1.

To bring the module ‘Counter' in a reusable form we have to store it
using the function 'store module' in the 'file'-menu of the PACE main
board. After that 'Counter' can be used as a "language element"
during the further development of the net.

The use of modules resp. language elements can be improved by
the use of meaningful icons which give an intuitive impression of the
semantics behind the language elements. In the present example
the icon of an abacus is used. By this we get the following represen-
tation of the module 'Counter':

IBE / PACE More Complex PACE-Constructs

7 - 11

The development of more complex modules can be done in a similar
manner. Amongst others the following PACE properties can be used
advantageously:

· Modules can be developed hierarchically.
· Moudles can have module variables which are instantiated with

every use of the module.
· During the development of a module all language elements of

Smalltalk-80 and the full Smalltalk library can be used.

7.3.2 Use of language elements during the
 development of a net

With the preceeding steps the new language element 'Counter' is
available generally. We now show how predefined language
elements are put together to "net programs".

IBE / PACE More Complex PACE-Constructs

7 - 12

In the next figure the module 'Counter' has been inserted 4 times
with the function 'restore module' of the No-Selection-Menu of the
window in edit-mode:

To do something more or less meaningful with the module 'use of
module counter' we could connect the four instances of 'Counter':

To do this several changes and extensions have to be done with the
graphical PACE editor. These consist in:

· Exchange of the places 'input' and 'output' of the instances of
'Counter' on the right side.

IBE / PACE More Complex PACE-Constructs

7 - 13

· Insertion of transitions beween the output and input places of the
4 instances of 'Counter'.

· Insertion and Attributation of the connectors.

In real applications the names of the input and output places should
also be changed, so that they are named unambiguously (what we
do without here).

To run a simulation we need tokens attributed with a number. We
insert three tokens in the upper left place using the following input

IBE / PACE More Complex PACE-Constructs

7 - 14

window which opens after the selection of the menu item 'initial
tokens' in the selection menu of this place:

We assign to the three tokens the initial values 1, 100 and 1000.

Our window 'use of module counter' now looks as follows:

IBE / PACE More Complex PACE-Constructs

7 - 15

Up to now we have worked in the 'edit'-Mode. For we have finshed
the development of our simple net we now press the 'simulate'-but-
ton on the left lower corner of the window and start the simulation.

The next figure shows a snapshot of the net window during the
simulation. Two tokens lie on the upper left and right place, the third
tokens with the attribute '832' just moves from the upper right to the
upper left place.

IBE / PACE More Complex PACE-Constructs

7 - 16

This examples also shows that the implementation of standardized
semigraphical language elements leads to the same disadvantages
as they also occur with the implementation of high level program-
ming languages.

Here as there the standardization of language elements makes a
certain overhead that would be presumably in part recoverable by an
optimizing net editor, however, because of the increasing computer
technology (faster and faster processors, more and more storage)
this doesn't make any difference.

IBE / PACE More Complex PACE-Constructs

7 - 17

7.4 Netfunctions

The multiple insertion of a module shown in the previous example
would easily lead in case of bigger modules to inflated nets in which
big parts of the net would be identical. This would only be questio-
nable with respect to today's computers if the nets are very large.
The multiple insertion of a module has, however, a further
disadvantage.

If changes or corrections of a module are made, the changes have to
be made at all places where the Modul was inserted. Because the
net in this case must be edited at different places this can be an
extensive and error-prone job.

There was the same problem during the programming in higher
programming languages which led to the introduction of blocks
(Smalltalk), of subprograms (Fortran) or of procedures (Algol, pascal,
C). The repeatedly needed code is integrated in this case only once
into a program and can be called from different program places.

In PACE there is also the possibility to call blocks from different
inscriptions (see section 3.4 of the PACE Smalltalk Primer). In
addition it is also possible to call "netfunctions" which are executed
as subprocesses in parallel to each other and to the main process.
The process with which the simulation model starts is designated as
the main process in this case. For the starting of a netfunction there
are five methods:

addTokenTo:
addTokenTo:with:
addTokenTo:with:with:
addTokenTo:with:with:with:
addTokenTo:attributes:

which are also used when reacting on external events (see PACE
User Manual, chapter 3).

IBE / PACE More Complex PACE-Constructs

7 - 18

To support netfunctions independent partial networks must be provi-
ded by the main net, first of all. A partial network must have entry-
places and exit-transitions. We restrict in the following to one entry-
place and one exit-transition, since this case most frequently occurs
and since it can be generalized easily.

A netfunction is started when a token is placed into the entry-place
by execution of one of the above listed addToken methods. As a last
step of the netfunction one of the above methods returns a token into
the initial net. This token can be used for example in order to
synchronize the continuation of the calling net with the end of the
netfunction and to deliver results to the calling environment. An end
signal of the netfunction is always necessary (either in form of data
and/or as a token) in order to prevent that the non reentrant netfunc-
tions are called simultaneously repeatedly.

In order to keep an eye on a concrete example, we consider the net
"netA" shown in the following illustration which consists of 3 uses of
the module "PartialNet" which were combined with each other by two
transitions. We choose this net in order to demonstrate how the task
of the modules 'PartialNet' can be transfered to a subprocess.

IBE / PACE More Complex PACE-Constructs

7 - 19

In the present case of course one could avoid the multiple use of
"PartialNet" also by the modeling a loop. In more general cases
when the modules to be inserted are used on different hierarchical
levels of a net there is however no simple alternative to a netfunctio-
ns apart from inserting the module repeatedly.

IBE / PACE More Complex PACE-Constructs

7 - 20

The net equivalent to net 'netA' in which the module "PartialNet" was
put only once is shown in the following figure, 'netB':

As an alternative to it the net represented in the next illustration can
also be used.

IBE / PACE More Complex PACE-Constructs

7 - 21

The right partial network is called by inserting a token into the place
"Entry". The place in which the result is supposed to be delivered is
to be indicated in this case as an argument; the return places are
"Return1" and "Return2". The respective return place is brought to
the return-transition as value of the connector variable "return".

With the places "Return1" and "Return2" in the main net the subpro-
cess are synchronized with the main process. It is guaranteed that
the partial network is not executed simultaneously repeatedly. If the
value nil is indicated instead of the return place, the main process
does not expect any end message of the subprocess progressing
simultaneously

If the PartialNet is used independently in several parallel branches of
a net, it can be guaranteed easily, that at one time only one subpro-
cess progresses (see the following figure). A token is placed into the

IBE / PACE More Complex PACE-Constructs

7 - 22

right place; this and the entry token are used to start the subprocess.
Further tokens which are placed into the place 'Entry' can only run if
the exit transition fires and inserts a flag into the right place again.

IBE / PACE More Complex PACE-Constructs

7 - 23

7.5 Improvement and Optimization

One can distinguish basically between two kinds of model
improvement:

1. Procedural Improvement
This kind of improvements are carried out by a suitable design of
a net and/or with improvements of the inscription code.

These improvements depend usually very strongly on the
problem and are therefore part of the modeling.

2. Parameter Optimization
Models normally can be supplied with different parameter sets
and then show a different behavior for each set. Frequently the
optimal parameter set is searched with respect to specific defaul-
ted criteria (e.g. as few as possible resources for the processing
of a specific work load in a specific time).

PACE offers support for both kinds of improvements. The graphics
editor allows to change a net very rapidly to implement and investi-
gate changes of a net and different solutions.

To optimize parameter sets PACE offers supporting methods and
exact mathematical procedures. It allows the program-controlled
repetition of simulation runs with different code to be assigned to
each repetition. This can for instance be used to change the values
of the model's parameters during the restart of the model (mostly in
the initialization code).

In the PACE optimization manual the graphical and mathematical
optimization procedures and methods available in PACE are descri-
bed. To the extensive examples in this chapter there are correspon-
ding models in the samples directory of the PACE installation
directory.

IBE / PACE More Complex PACE-Constructs

7 - 24

As a tutorial we here demonstrate the most important procedures
with a simple transparent example. We investigate an „unknown“
test module which we have to provide with a number as input value
and which delivers a number as the corresponding result. We want
to know for which input value the module delivers the maximal output
value.

The search for the optimum is carried out in the following as well
graphically as algorithmicly.

To paint the dependence between the input value and the output
value the net in the foregoing figure is extended as follows:

IBE / PACE More Complex PACE-Constructs

7 - 25

IBE / PACE More Complex PACE-Constructs

7 - 26

The global variable ModuleCurve is defined in the initialization code
with the statement:

 (ModuleCurve := Curve named: ‘ModuleCurve’) clear

The Curve ‘ModuleCurve’ has to be installed from the PACE Views
menu. For repeated execution of the model the curve is cleared
before each simulation run.

The scaling of the curve the parameter menu of the curve is used.
To open it postition the cursor on the scale of the curve and press
the right mouse button. After adjusting the values they are overtaken
in the curve window by pressing the return button of the keyboard.
After this the parameter menu is deleted by selecting with the left
mouse button the cross in the right upper corner.

In the place at top an initial token with value 0 is inserted which
starts the evaluation of the curve. We investigate the result curve in
the interval between 0 and 4. If no description of the module is
available this interval has to be determined „experimentally“. For
instance one can first investigate a larger interval. In this case one
has to switch on the parameter option „automatic scaling“ in the
window of the output curve „ModuleCurve“.

To start the simulation switch at least in one of the net windows into
simulation mode, execute with the right mouse button (cursor in a
net window in simulation mode) first the menu function „initialize“ and
the one of the menu functions „run“ or „background run“.

The result of the execution is shown in the next figure. Using the
scaling of the window one can roughly read the input value with the
greatest result value. If one wants to know this value more precisely
it is recommended to switch on the option „cursor position display“ in
the parameter menu of the curve. Then under the curve in the curve
window the position of the mouse cursor is shown. If one positions
the mouse cursor on the maximum one can read off the position of
the maximum. The curve window shows that the maximum value
occurs for the input value 0.795.

IBE / PACE More Complex PACE-Constructs

7 - 27

To evaluate the demanded input value with one of the optimizers
implemented in PACE the „TestModule“ is incorporated into a
netfunction „Func“.

IBE / PACE More Complex PACE-Constructs

7 - 28

IBE / PACE More Complex PACE-Constructs

7 - 29

For the input values from the optimizer are delivered in form of a
vector but the „TestModule“ expects the input value directly the value
is calculated at the begin of the netfunction with the assignment:

val := vec. at: 1.

The result is delivered to the optimizer with the statement:

self netResult: res.

The two small nets to the left serve for the call of the optimizer and
for the output of the result into a Transcript window. One receives as
in the case of the graphical evaluation the result 0.79.

To make it possible to duplicate the example we finally announce the
module „TestExample“ which is merely the sum of sinus and
cosinus.

IBE / PACE More Complex PACE-Constructs

7 - 30

In more complicated possibly multi-dimensional cases in which a
pre-developed module whose behaviour is not so easy to predict
(e.g. a production line) has to be incorporated in a model similar
algorithmic procedures have to be applied to evaluate the optimal
parametrization.

IBE / PACE More Complex PACE-Constructs

7 - 31

7.6 Connecting a DLL written in C to PACE

We look at the example represented in the following figure in which a
circulating token increments a counter up to a certain value and then
resets it.

To show the interface between PACE and C we replace in the
following the Smalltalk inscriptions by messages which call
C-procedures of the dynamic link library ‘userdll.dll’ to be developed.
After making these changes our net looks e.g. as follows:

IBE / PACE More Complex PACE-Constructs

7 - 32

In the left transition we call with the message ‘procedure0:’ a
C-procedure ‘incrementValue’ which increments the parameter n and
returns the incremented value back to the net. The right transition
calls with the message ‘procedure1:’ the C-procedure ‘checkValue’
which resets the value of n in case that the value 11 is reached.

To implement the interface between Smalltalk and C we have to
extend the C-module ‘userdllvm.c’ (see the directory 'makedll' in the
PACE installation directory) to implement the mentioned two proce-
dures. The link list „UserProcs“ has to be extended for this and the
two mentioned procedures have to be added.

/* PACE 2008
* Development of uderdllvm.dll: File userdllvm.c
*
* Procedures to be connected by the user:
* For different numbers of parameters there a designated in
* each case 6 procedures. These are connected to Smalltalk using the
* primitive numbers 110xy .
*
* The first digit x (x = 0,..,5) defines the number of the procedure.

IBE / PACE More Complex PACE-Constructs

7 - 33

* The second digit y (y = 0,.. 4) defines the number of parameters.
*
* If the number of designated procedures with a special number of
* parameters is to small in an application, the user has to define
* instead only one procedure and has to branch from this procedure
* to the other procedures
*
* If there are more than 4 parameters the user has to store these in a
* collection and has to transfer the collection to C.
*/

#include "userprim.h"
#include "userdll.h"

static upInt value;

extern void UserProcs();

void incrementValue();
void checkValue();

extern void UserProcs()
{
 UPaddPrimitive(11001, incrementValue, 1);
 UPaddPrimitive(11011, checkValue, 1);
}

void incrementValue(upHandle receiver, upHandle n)
{
 value = UPSTtoCint(n) + 1;
 UPreturnHandle(UPCtoSTint(value));
}

void checkValue(upHandle receiver, upHandle n)
{
 if (UPSTtoCint(n) > 10) { value = 0;};
 UPreturnHandle(UPCtoSTint(value));
}

Then we have to translate userdllvm.c, e.g. with Visual C/C++,
Version 6.0. In the directory:

IBE / PACE More Complex PACE-Constructs

7 - 34

pace-directory\Makedll\Example

we have prepared all files for this purpose. After loading the
workspace the above C-module is displayed and ‘userdllvm.dll’ can
be generated automatically.

In the example directory we move the file name ‘pace2008.imm’,
which contains the example ‘Cexample2’, with pressed left mouse
button over the file name ‘pacevm.exe’. If we release the mouse
button PACE is started from the example directory and our newly
generated file ‘userdllvm.dll’ is loaded.

If we would have started PACE by double clicking on the image
‘pacevm.imm’, our new userdllvm.dll would not have been used.
Instead the default- or dummy-file ‘userdlvm.dll’ in the Windows
system directory would have been invoked.

Recommendation:
If a project team uses an extended interface it is recommended to
replace the default-file userdllvm.dll of the team with the new
‘userdllvm.dll’ which implements the extended interface.

IBE / PACE More Complex PACE-Constructs

7 - 35

Appendix:

List of the PACE Training Nets

Condition for firing with
constant token attribute and

2 initial tokens with
constant number and

006

Conditon for firing with
coinstants and taking over of
input attributes

2 initial tokens with
constant number and
constant input and
output connector

005

Condition for firing with
constants

2 initial tokens with
constants

004

Condition for firing with
capacity

4 initial tokens with
condition and capacity

003

Conditions for firing with input
setting

3 initial tokens with
conditions

002

To show the element types of
an extended Petri net

3 initial tokens with 1
constant. 1 Token mit 2
constants. Constant
input and output
connectors

001

Transfer to a connector
variable

Token with String000

UseDescriptionFile

IBE / PACE Apppendix: List of PACE training nets

A - 1

a) Delay
b) Comment!
c) Incrementation

Counter with delay012

a) Sorting
b) Firing conditions true/false
c) Generation of tokens with
incremented attribut

"Controlled" branching
with token generation

011

Incrementing and decrementingtransition code010

Activation if two input tokens
are identical

4 initial tokens with 2
equal constants, 2
diffenrent numbers, 2
equal variable input
connectors and 1
output connector.

009

a) "Infinite" token generation
b) Mode of branching (random/
deterministic)

Generating transitions
with 4 numbers
connector and follo-
wing branching with
variable connectors.

008

a) Firing conditions with
constant token attribute and
handling over the constants of
the output connector.
b) Problem with the number of
arguments for tokens resp.
connectors.

3 initial tokens with
constants. A token with
2 constants. Constant
input and output
connectors.

007

taking over of input and output
attributes in variables

variable input and
output connector

IBE / PACE Apppendix: List of PACE training nets

A - 2

a) Normal distribution
b) Histogram of a connector

Histogram of a conne-
cotr with normal
distribution

019

a)Trigonometrical functions
b) Statistics window
c) Show the refinement of the
curve
d) Counting up and down
e) Line diagram at a place

Sinus curve with
positive offset, line
diagram.

018

a) Uniform distribution
b) Delays
c) Connected Delays
d) Histogramm at a place

2 connected delays
with histogram at the
place

017

a) Module
b) Alternating values of a token
in 2 places
c) Delay (not relevant for the
working of the example).

Generator and inverter
module

016

Number as connector attributeInhibitor with constant
connector

015

a) Transition code is executed
during firing not when
activating.
b) 2 possibilities for transition
code.
c) Clean separation
e) Smalltalk code (read from
and write to an array)

3 nets with array and
increments

014

a) "Concept of time"
b) Firing list

2 independent counters
with different delays

013

IBE / PACE Apppendix: List of PACE training nets

A - 3

a) Timeout without
"consequences"

Timeout029

a) 4 times loop
b) then branch off

Loop028

Branching variant fireBranching: Variant with
firing conditions

027

Branching variant #xBranching: Variant with
constant connector
attribute

026

Random generatorRandom generator with
uniform distribution

025

Incrementing by 1Counter024

Uniform distributionUniform distribution
with connector
histogram

023

Normal distributionNormal distribution with
connector histogram

022

Exponential distributionExponential distribution
with connector histo-
gram

021

 Line diagram of a connectorLine diagram of a
connector with
exponential course

020

IBE / PACE Apppendix: List of PACE training nets

A - 4

a) Dictionary
b) Output of different elements
of the dictionary

Dictionary039

a) Association
b) Output of different elements
of the association and
incrementation

Variation with
Association

038

a) Association
b) Output of different elements
of the association.

Creation of an
Association

037

a) Array
b) Output of different elements
of the array.

Variation of net035:
Creation of an Array

036

a) Array
b) Output of different elements
of the array.

Creation of an Array035

OverflowVariation von net032:
Processing in predefi-
ned time. With overflow

034

a) Semaphores for controlling
b) Duration of the process
c) Variation mit capacity

Variation of net032:
Processing in predefi-
ned time. Only one
task at a time.

033

a) Semaphores for controlling
b) Duration of the process
c) Variation mit capacity

Processing in predefi-
ned time. Only one
task at a time.

032

timetableClock with 24 time
units

030

IBE / PACE Apppendix: List of PACE training nets

A - 5

first in first outFIFO049

a) Creating of a file which
contains an OrderedCollection
b) Writes only the last of two
collections

File048

Variations of the generationDictionary047

a) Deep copy of dictionaries
b) Copy to another token with
an OrderedCollection

Copying of dictionary
and OrderedCollection

046

Shallow copyCopying of number and
dictionary

045

a) Set
b) Generation of prime
numbers

Set044

a) Set
b) Output of different elements

Set043

a) Ordered Collection
b) Manipulation

Ordered Collection042

a) Ordered Collection
b) Output of different elements

Ordered Collection041

a) Dictionary
b) Manipulation of the
dictionary

Dictionary040

IBE / PACE Apppendix: List of PACE training nets

A - 6

Order of transfersHandling over of 4
arguments to a
connector

100

a) Simultaneous scheduling of
events
b) Sequential scheduling

Working off an order 061

a) Behaviour of queues
b) Testing of statistics

Queue060

Changing icons of a
module

057

Changing icons057

mit Dialog (string)Input string056

with Dialog (true/false)Input "Yes/No"055

a) Modul globale Variable
b) Modulvariable

Module variables054

use of a global variableInput of a BarGauge053

Message to an output windowOutput052

Output with respect to prioritiesSort out by priorities 051

last in first out with sort for an
OrderedCollection

LIFO050

Further nets:

IBE / PACE Apppendix: List of PACE training nets

A - 7

The directory nets contains besides the netxxx.net training
examples, which are part of each PACE distribution the following
example nets:

a) Packing
b) Unpacking

Packing and
Unpacking of objects

PackUnpack

a) switch
b) Manual intervention

Switch on/off by
choice of partial nets Switch

a) Rotating table
b) Part processing
c) Roboter1
d) Roboter2
e) Parts source

conveyor belt
/turntable

FOERDMOD

IBE / PACE Apppendix: List of PACE training nets

A - 8

	Cookbook and Tutorial
	Contents
	1 Introduction
	1.1 The Software-Tool PACE
	1.2 Bibliography

	2 Attributed PACE-Petri-Nets
	3 Introduction into PACE
	4 Use of Smalltalk in PACE
	4.1 Working with Objects
	4.2 Extra Codes

	5 Simple PACE-Constructs
	5.1 Counter
	5.2 Random Number Generator
	5.3 Branching
	5.4 Loop
	5.5 Timeout
	5.6 Firing of tokens at a special time
	5.7 Rotating Table
	5.8 Processing
	5.9 Overflow
	5.10 Queues
	5.11 Packing and Unpacking of Objects

	6 Statistics and Distributions
	6.1 Statistics
	6.2 Distributions

	7 More Complex PACE-Constructs
	7.1 Use of a Standard Module
	7.2 Switch
	7.3 PACE Modules
	7.4 Netfunctions
	7.5 Improvement and Optimization
	7.6 Connecting a DLL written in C to PACE

	Appendix: List of Training Nets

